Archive for water conservation

How Dairy Farms in the US Cut Greenhouse Gases by 42% in 50 Years

See how US dairy farms have changed in 50 years. Want to know more? Read the full story.

Have you ever wondered how your morning milk became more environmentally friendly? Over the last 50 years, dairy farms in the United States have seen a dramatic change, increasing milk production efficiency while considerably reducing environmental impact. These changes are more than simply numbers on paper; they impact our everyday lives, health, and common environment.

Join us as we look at this beautiful path of advancement and invention. Discover how technological improvements, crop yields, and farm management have revolutionized the dairy farming industry. This isn’t simply about cows making more milk.  It’s about a holistic improvement in: 

  • Greenhouse gas emissions reduction
  • Improved fossil energy efficiency
  • Smarter water usage

“The national average intensity of GHG emissions decreased by 42%, demonstrating a 14% increase in the total GHG emissions of all dairy farms over the 50 years.”

The implications of these developments are enormous. Reduced environmental effects lead to a healthier earth, while enhanced production efficiency guarantees that dairy products remain a mainstay in our meals. As consumers, being aware of these improvements enables us to make better decisions and appreciate the intricate processes that deliver food to our meals.

Environmental Metric19712020% Change
GHG Emissions (kg CO2e/kg FPCM)1.700.99-42%
Fossil Energy Use (MJ/kg FPCM)5.772.67-54%
Water Use (kg/kg FPCM)33.524.1-28%
Ammonia Emissions (g/kg FPCM)11.67.59-35%
Nitrogen Leaching (g/kg FPCM)5.231.61-69%
Phosphorus Runoff (mg/kg FPCM)176.2118.3-33%

Guess What? We Now Need 30% Fewer Cows but Produce Twice the Milk! 

Did you know that we now require around 30% fewer cows to produce almost twice as much milk as we did fifty years ago? That’s correct; despite having fewer cows, milk output has increased dramatically, owing to advances in agricultural methods and technology.

Here’s a brief breakdown: 

  • 1971: Larger herds with lower production efficiency needed more cows.
  • 2020: With better genetics, nutrition, and farm management, fewer cows produce more milk.

What does this mean for the environment? The math is simple and impactful: 

  • 42% decrease in greenhouse gas (GHG) emission intensity per unit of milk produced.
  • 54% decrease in fossil energy use intensity.
  • 28% reduction in water intensity for milk production.

This is more than simply producing more milk; it is also about making it more environmentally friendly and sustainable. The advantages extend beyond the farm, impacting everything from energy use to water conservation. Dairy farms reduce their environmental impact significantly by increasing efficiency.

Isn’t it a marvel? The dairy business has shown that with innovation and effort, fewer resources may lead to increased production and environmental advantages. It’s a narrative of growth that offers hope for a sustainable future.

Watch Out! The New Tech Revolution Turning Dairy Farms Green

Consider how smarter, more efficient agricultural equipment may alter the dairy sector. Tractors have evolved into lean, mean machines capable of producing milk. Today’s tractors are significantly more fuel-efficient than those of the past. They lowered fossil fuel use by 54% using less diesel [USDA NASS, 2023b].

But it’s not just the tractors. The energy that runs dairy farms has likewise undergone a green revolution. The push for renewable energy has made it cleaner and more efficient, resulting in lower greenhouse gas emissions from power consumption [Rotz et al., 2021]. This environmentally friendly makeover includes fertilizer. More effective fertilizers need less of them to provide higher crop yields, minimize nutrient runoff, and reduce fossil fuel use [Kleinman et al., 2019].

All of these developments add up. Each technological advancement increases dairy farming productivity while also being more environmentally friendly.

The Surprising Shift: Why the West is Now the Dairy Capital 

So, why is there so much talk regarding regional shifts? Let’s get into it. Dairy farming in the United States has increasingly transitioned from the East to the West over the last 50 years. This relocation has substantially impacted environmental indicators in addition to geography. Take cow numbers as an illustration. In the East, numbers have dropped by almost 49%. Contrast this with the West, where cow numbers have more than doubled.

So, what does this transition signify for the environment? For starters, the West’s greenhouse gas (GHG) emissions have surged as the number of cows has grown. GHG emissions are projected to triple in places such as the Northwest and Southwest. This surge cancels out the East’s lower emissions, resulting in a moderate national increase of 14% in overall GHG emissions.

Then there’s water consumption. Western farms depend heavily on irrigated crops to feed their cattle, causing water demand in locations such as the Southwest to skyrocket—576 kg/kg FPCM. The national total water usage has increased by 42%, posing a significant challenge considering the West’s periodic water shortages and droughts.

However, it is not all doom and gloom. There have been some beneficial developments. For example, although ammonia emissions increased by 29% overall, fertilizer runoff losses such as nitrogen and phosphorus have reduced due to improved agricultural techniques.

The east-to-west movement has had a mixed effect—improved efficiency on the one hand but increased resource usage and emissions on the other. The goal is to reduce these heightened consequences while maintaining efficiency improvements.

You Won’t Believe How Efficient Dairy Farms Have Become! 

Did you know that during the last 50 years, greenhouse gas (GHG) emissions per unit of milk produced in the United States have fallen by 42%? This significant drop is primarily the result of improvements in milk production efficiency and novel dairy farm operations. For example, contemporary technology has helped dairy farms become more efficient, enabling them to produce the same quantity of milk while using fewer resources and producing less waste.

You may wonder how this considerable reduction in GHG emission intensity translates into just a 14% increase in overall GHG emissions, particularly considering the huge increase in milk output. The solution is efficiency. In 1971, dairy farms required more cows and energy to produce the same quantity of milk. Today, technological breakthroughs, such as improved feed quality and management procedures, have enabled farms to grow almost twice as much milk with 30% fewer cows.

While total milk production has almost doubled, increased efficiency means that each gallon produces much less emissions. For example, agricultural methods today include improved manure management, which decreases methane emissions, and precision feeding, which optimizes cow diets to minimize GHG emissions (https://www.epa.gov/ghgemissions). Adopting renewable energy sources like anaerobic digesters reduces GHG emissions by converting waste into electricity  (https://www.ers.usda.gov/publications/pub-details/?pubid=90538).

So, while generating much more milk, the overall increase in GHG emissions is relatively minor. This balance demonstrates the impressive efficiency improvements of current dairy production operations. Not only does this improvement assist the environment, but it also illustrates how technology breakthroughs may generate considerable environmental change. Isn’t it something to think the next time you have a glass of milk?

Here’s Something to Chew On: US Dairy Farms Have Made Remarkable Strides in Reducing Their Reliance on Fossil Energy 

The figures reveal an eye-opening narrative of a 54% decline in fossil energy intensity over the last 50 years. This implies that the energy needed per unit of milk produced has been reduced by more than half! Furthermore, the overall amount of fossil energy used across all farms has fallen by 9%.

How did we achieve this big efficiency boost? Technological developments and improved resource management play prominent roles. For starters, the transition to more efficient gear has been game-changing. Modern tractors and equipment use far less fuel per acre than their antique predecessors. Adopting diesel engines instead of gasoline engines has also been a significant advancement. Naranjo et al. (2020) found comparable results for California dairy farms, indicating a general trend.

However, it is not just about improved engines. The transition to renewable energy sources, such as employing anaerobic digesters to produce power from cow dung, contributes to a decrease in fossil energy use. These digesters not only reduce fossil fuel usage but also aid in reducing greenhouse gas emissions.

On the farm management front, resource efficiency has gained precedence. Farmers are increasingly using technologies such as precision agriculture, which enables them to apply the exact quantity of inputs such as water and fertilizer, reducing waste and increasing efficiency.

These developments are not just flashes in the pan but significant milestones toward sustainable dairy production. And although we’ve made tremendous progress, the road is far from done. The dairy industry’s continuing commitment to innovation and development will guarantee that it stays responsible for our natural resources.

Brace for Impact: Western Dairy Farms’ Water Use is Skyrocketing Despite Efficiency Gains 

While we’ve made significant progress in lowering water consumption intensity per unit of milk produced by 28%, the tale doesn’t stop there. The transfer of milk production to the drier western areas has resulted in a 42% rise in total blue water use. This implies that, while utilizing water more effectively, the sheer quantity of dairy farms in arid places has increased total water use.

So why is this such a huge deal? Water is a valuable and often limited resource, particularly in the West. Increasing irrigation water demand confronts the combined danger of rising temperatures and decreasing water resources. As climatic conditions worsen, it is apparent that water usage efficiency will no longer be a luxury; it will be required for the long-term viability of US dairy farms.

Innovative technology and improved water management methods may assist in addressing this problem. Advanced irrigation systems, drought-resistant crops, and even the capture and reuse of water in dairy operations must become routine practices. This proactive strategy guarantees that dairy farming grows while still being environmentally friendly.

The Nutrient Puzzle: Why Are Some Emissions Up While Others Are Down? 

Let’s examine nutritional losses—they’re a bit like a double-edged sword. Have you ever wondered why some emissions rise while others fall? It’s rather fascinating.

Consider ammonia emissions, for example. They increased by a stunning 29%. You could be wondering, “Why?” As it turns out, more cows are kept in open areas, and long-term manure storage is used more often. These technologies are known for emitting substantial ammonia into the atmosphere [Rotz, 2014]. This has been a tricky issue since, as our technologies progressed, they unintentionally resulted in more ammonia floating about.

On the other hand, nitrogen leaching has decreased by 39%, which is a good surprise. How did this happen? The key is effective nutrition management. Farms avoid excess nitrogen from leaching into groundwater by improving manure nitrogen use and reducing inorganic fertilizer usage. Using cover crops and less tillage reduces leaching (Castaño-Sánchez, 2022). As ammonia emissions increased, nitrogen levels that may contaminate water sources were reduced.

Continuing with uneven outcomes, let’s talk about the runoff losses. Here’s a positive statistic: nitrogen and phosphorus runoff losses have decreased by 27% to 51%. That is big! Fewer tillage operations and cover crops have lowered nutrient and sediment runoff [Veltman, 2021]. When manure is absorbed into the soil more quickly and with some subsurface injection, less phosphorus ends up in runoff, especially sediment-bound phosphorus.

So there you have it. The landscape of nutrient outputs and losses is complicated, requiring a continual balancing act. Nonetheless, these advancements indicate that we are moving on the right path, even if specific indicators lag.

The Hidden Cost of Efficiency: Rising Methane and VOC Emissions

A disadvantage of higher milk production efficiency is increased methane (CH4) and volatile organic compounds (VOCs). Over the last 50 years, methane emissions from dairy farms have increased by 32%, while reactive non-methane VOCs have increased by 53%. These data should catch your attention, particularly given the rapid expansion of dairy farms in the western areas.

So, what’s behind these increases? It comes down to two key factors: 

  • More Cows, More Emissions: Western dairy farms have expanded significantly despite a national decline in cow numbers. More cows produce more methane, primarily via enteric fermentation and waste management. The construction of long-term manure storage facilities, such as lagoons and piles, increases methane emissions.
  • Increased Surface Area for VOCs: Changes in how farmers store feed and waste add to VOC emissions. Large, open silage bunkers and piles enable more organic material to react with oxygen, producing and releasing volatile organic compounds.

The environmental implications are worrying: 

  • Climate Change: Methane is a potent greenhouse gas, with a global warming potential 28 times larger than CO2 [EPA]. The rise in methane levels is a setback in the battle against climate change.
  • Air Quality: VOCs lead to the formation of ground-level ozone and smog, which degrades air quality and presents health hazards.

These growing emissions underscore the need for new methods and technology to manage manure and silage on dairy farms effectively. To address these expanding problems, environmental stewardship must stay up with industrial improvements.

Still Skeptical About the Incredible Advancements in Dairy Farming? Here’s What the Experts Are Saying! 

Still dubious about the remarkable advances in dairy farming? Let’s look at what the experts are saying.

Capper et al. found that improved feed efficiency and animal management practices had considerably increased milk yield per cow. According to [Capper et al., 2009](https://doi.org/10.3168/jds.2009-2079), the average milk supply per cow has increased by 2.4 times in the last 50 years, leading to significant environmental advantages.

The USDA National Agricultural Statistics Service (NASS) backs up these allegations. Their statistics demonstrate a staggering 42% reduction in greenhouse gas emission intensity across US dairy farms, attributable to advances in feed efficiency and other sustainable practices ([USDA NASS, 2023a](https://www.nass.usda.gov/).

Rotz et al. discuss technical improvements, emphasizing the function of precision agricultural instruments and anaerobic digesters in lowering fossil energy use. According to their complete study, “The shift to more efficient farm machinery and renewable energy sources has cut fossil energy use by over 50% per unit of milk produced ” ([Rotz et al., 2021](https://doi.org/10.3168/jds.2020-19793)).

However, not everything is bright, as Hospers et al. point out in their analysis of Dutch dairy farms. They point out that although Western US farmers have made tremendous progress, overall output growth has resulted in increased water demand. “Efficient irrigation technologies have not kept up with the rapid expansion of dairy operations in arid regions,” their report says (Hospers et al., 2022).

Even environmentalists are chiming in. Hristov et al. note that ammonia emissions remain a major problem. “Despite significant gains in reducing other pollutants, ammonia from manure storage and management still poses environmental challenges,” they warn (Hristov et al., 2018).

These credentials support the assertions and highlight the continuing problems and opportunities for future progress in US dairy production. Whether it’s a rise in milk output or the introduction of ground-breaking technology, the sector is transforming, and the evidence speaks for itself.

The Bottom Line

The dairy business in the United States has made fantastic improvements during the last 50 years. We’ve made significant progress in lowering the number of cows required, improving milk production efficiency, and minimizing environmental consequences such as greenhouse gas emissions and energy consumption. However, these accomplishments are fraught with difficulties, particularly in countries such as the West, where water use has surged. Improved efficiency is excellent, but it is evident that continuous innovation and new methods are required to sustain this pace.

The dilemma remains: How can we continue to enjoy dairy products while safeguarding the environment? It’s not only about reflecting on our achievements but also about anticipating what might be accomplished. Can we make additional efforts to capture renewable energy on farms, enhance waste management systems, or adopt more water-efficient agricultural practices? Sustainable dairy production in the future depends on our willingness to accept and spread these creative ideas.

Key Takeaways:

  • Dairy farms in the US now use 30% fewer cows but produce twice as much milk compared to 50 years ago.
  • Technological advancements have significantly increased crop yields, fuel efficiency, and resource efficiency on farms.
  • Greenhouse gas (GHG) emission intensity per unit of milk decreased by 42%, even though total GHG emissions slightly increased by 14%.
  • Fossil energy use per unit of milk dropped by 54%, with a national total reduction of 9% in fossil energy use over 50 years.
  • Water intensity for milk production decreased by 28%, but total blue water use rose by 42% due to more dairy farms in arid western regions.
  • Ammonia emissions increased by 29%, while nitrogen leaching losses decreased by 39% over the same period.
  • Total phosphorus runoff losses decreased by 27% to 51%, thanks to better fertilizer use, reduced tillage, and more cover crops.
  • Methane emissions rose by 32%, and reactive non-methane volatile organic compounds increased by 53%, attributed to long-term manure storage and silage practices.
  • Continued advancements are essential to further reduce the environmental impact of dairy farming in light of climate variability.

Summary:

Over the past 50 years, US dairy farms have drastically improved in areas like milk production efficiency and environmental sustainability. With 30% fewer cows, farms now produce double the milk. Technological advancementshave reduced greenhouse gas (GHG) emissions intensity by 42% and fossil energy use intensity by 54%. However, total GHG emissions rose by 14%, and methane and reactive non-methane VOC emissions increased due to enhanced manure storage methods. Water use in the western regions surged by 42% despite efficiency improvements. The eastern regions showed notable reductions in nutrient runoff, emphasizing a mixed but overall positive trend towards sustainable dairy farming. Technological advancements, crop yields, and farm management have improved the dairy farming industry, reducing greenhouse gas emissions, improving fossil energy efficiency, and ensuring smarter water usage. Smarter agricultural equipment has transformed the dairy sector, with tractors now being more fuel-efficient and fertilizers requiring less to provide higher crop yields and minimize nutrient runoff. Some beneficial developments have been achieved, such as reduced ammonia emissions and fertilizer runoff losses due to improved agricultural techniques.

Learn More: 

The Future of Agriculture: Time Bomb or Crystal Ball

Today our greatest dairy achievements could be at risk. At the very least there are seven issues that, if ignored, threaten to blow the agricultural industry to smithereens. These are food production, water conservation, climate change; land use; unpolluted air and animal and human rights. Each of these challenges holds within it the potential for disaster or positive improvement.  It is up to 21st Century dairy farmers to take responsibility for turning these threats into opportunities.

What are we as dairy breeders holding in our hands? Can we foretell a profitable, sustainable future? Or are we holding a time bomb that is set to explode?   

“We Want Food”

The oft repeated challenge is that agriculture must provide food to sustain a population of 9 billion at ever higher living standards by 2050. On the one hand, non-farm folks want the best food, and they want that to include the best quality, selection and quantity.  However, they want all of this produced on small (aka non-corporate) farms.  That unrealistic dream isn`t remotely possible because of the simple fact that the few remaining farmers would have the land, herd size or profit margins to feed themselves let alone the hundreds of non-food producing consumers who would be relying on them for subsistence neither. We all too easily forget that when we can’t feed ourselves, nothing else matters, because we will be dead in four or five days.  Having said that if there is a will to change there are now continuous digital communities that span the food chain and connect its many contributors. The potential is there to work together to help coordinate our food systems to meet the needs of the world`s hungry people.

“Without Water We Can’t Survive”

Perhaps the most threatening issue is the competition for dwindling sources of fresh water which are the key to providing for skyrocketing food, industry and living needs. Today, 70 percent of the global water withdrawals go to agriculture and food production for a rising world population.

This means that this is another area where farmers are targets of criticism. From the dairy side, all dairies must protect water from bacterial contamination to produce that safe milk. Furthermore, access to bodies of water on the farm must be restricted from cattle access and never in danger of manure contamination. Uncultivated areas should be maintained between fields and waterways. Responsible dairies test water quality regularly to ensure its quality. Enforcing such rules is difficult, and it is imperative that all water users address problems of inefficient energy production and traditional crop irrigation methods while dealing with ways to address issues caused by exponential population growth. There are numerous water agencies, but there is no coordination on ways to manage this shared resource. All levels including governments, international water management organizations, the private sector and businesses need collaboration in finding solutions.

One writer, referring to the documentary Blue Gold: World Water Wars, presents this chilling perspective.  “Wars of the future will be fought over water as they are over oil today. As the source human survival enters the global marketplace and political arena. Corporate giants, corporate investors and corrupt governments vie for control of our dwindling water supply, prompting protests, lawsuits and revolutions from citizens fighting for the right to survive. Past civilizations have collapsed from poor water management.  Can the human race survive?”

“There is No Fresh Air to Breathe”

As more of the population moves into city settings, livestock production becomes less familiar.  For some, the manure production is regarded as air pollution and not as a by-product of a necessary industry. Manure is valuable to fertilize soils that grow crops to feed dairy animals. Modern farmers are accepting the challenge of finding ways to collect, store and apply manure to land so that they can manage odours and GHG emissions. For example, bio digesters minimize odours and use emissions to make renewable energy: a double win! Managing manure is an important aspect of dairy farming. Whether it’s about saving electricity or recycling, we’re all becoming more aware of our carbon footprint and the importance of minimising it.

“Don’t Destroy the Environment”

Headlines would suggest that farmers are destroying the environment when, in actual fact, farmers were the original good stewards of land and water resources and should endeavor to be so today. These resources are, after all, how farmers make their living, so it makes sense to protect them. Analysis of complaints reveals that misleading perceptions are at the root of criticism. What the public perceives as an environmental problem often is not. It is rare that farm related benefits such as green spaces and wildlife habitat are acknowledged or counterbalanced with the fact that farms use far fewer resources than the average urban or suburban home. (Read more: Top 10 Misconceptions about Ag & Farmers)

“Give Me Land Lots of Land”

We drive our grandchildren crazy with road trips where we point out that the passing city skylines were fields as far as the eye could see when we were their age.  Even our farm was one of three on the horizon … Today there are six more houses here where green belt restrictions mean fewer sustainable farms and more suburbia encroaching all the time. In contrast, some places are seeing huge rises in the cost of land. The high prices not only keep younger farmers out, but also cause larger farms (that need expansion to remain sustainable) to move the entire dairy operation. It’s a catch 22 situation.  “Don’t use more land but also don’t use technology.” In many of these areas that are challenging the future for all of us, part of the answer could be provided by technology. Improved technology — fertilizers, pesticides, improved irrigation, new storage or processing productions, improved livestock genetics – can transform the productive potential of land and livestock. But, before that can be realized, those from all sides of the issue have to agree on the goal and the ways to achieve it.

“You’re wrong.  I’m right.”

With the growing metropolitan areas and consumer separation from food production, both sides are lighting the fuse that could blow food production to smithereens. Headlines grab our attention as accusations fly back and forth. Like fights between children, our immature wrangling could have fatal outcomes – for agriculture, for consumers — for the future.

“Animals Have Rights”

It has to start with accountability. There is nothing wrong with being accountable for the way we treat animals … and for the way we treat each other.  Everyone needs to accept responsibility for treatment of animals … and for treatment of humans as well.  Nothing is gained from smear campaigns or vicious attacks.  Rather than assumptions of wrongdoing there has to be a commitment to improvement. (For a balanced viewpoint on the relationship between animals and humans check this link)

“Who Will Produce the Food?”

The average age of North American dairy farmers is near 60. Every active dairy farmer has concerns about where the next generation of farmers will come from.  Not everyone starting out is prepared for the financial roller coaster, the 24-7 working hours and, topping it all off, the poor public image that are part and parcel of dairy farming today.  However, there is a silver lining.  A recent Fox news feature reported that Ag degrees are the hot ticket for job growth. They quoted data from the Food and Agriculture Education Information System that says enrollment in U.S. college and university agriculture programs are up 21 percent since 2006. The data show more than 146,000 undergraduates in Ag programs. (Read more: Common Misconceptions in Food and Agriculture).  Positive steps are being taking, such as one coming out of Michigan. On April 30, the USDA awarded MSU $3.9 million to help Michigan farmers adapt to changing climate, tackle food safety issues, and help small- and medium-sized farms better compete in the marketplace. (Read more: USDA issues grants to MSU for food security, production).

“Adapt Your Strategic Plan”

Without a doubt, your hard work created the success you have had in the dairy industry.  Successful cattle sales.  Show ring winners. Best crop grower in your heat zone.  You have built your dairy business on what you do best.  Are those same skills going to keep and sustain you in the future?  Are the trophies on the mantle going to take your herd where it needs to go? Is there a lineup at your barn door for the genetics you’re selling today? You had a winning strategy up to now, and it worked.  But now it is being threatened by one or all of the preceding issues mentioned in this article.  The single minded focus that got you here could be your biggest problem in going forward.

“We Can’t Afford to have More Questions than Answers”

Of course, all of these issues are real threats. It would be great if the sources could be instantly cured. However, the cures will take time and will not be easy.  Having said that, we can all begin to eliminate our own contributions to the problem. Prevention trumps treatment any day. Any step you take can be one small, but mighty contribution to defusing the global time bomb and finding new and better solutions for the social, economic and environmental impacts of agriculture and, in our case, dairying.

The Bullvine Bottom Line

When it comes right down to it, a future with sustainable, profitable food production isn’t a place we are going to … it’s a place we are creating!  The following graphic should give us the impetus to start the process with our own practices.

wasted food

 

 

Get original “Bullvine” content sent straight to your email inbox for free.

 

 

Send this to a friend