Archive for USA

Understanding Conformation and PTAT: Key Differences in Dairy Cattle Genetic Evaluations in Canada and the USA

Uncover the critical variations in dairy cattle genetic assessments for conformation and PTAT between Canada and the USA. What implications do these standards hold for breeding practices?

For breeders aiming to produce the next World Dairy Expo Champion or an EX-97 cow, utilizing the American PTAT or the Canadian Conformation index is not just an option—they are essential tools in your breeding arsenal. While both PTAT and Conformation indices are invaluable, they are not interchangeable. This article will explore the distinctions between Canadian and American genetic evaluations for conformation and PTAT, shedding light on how each system functions and what sets them apart.

The Evolution of Genetic Evaluation Systems in Dairy Cattle: A Tale of Two Nations 

The historical trajectory of genetic evaluation systems in dairy cattle within Canada and the USA signifies an evolution of both countries’ dairy industries. Originally hinging on fundamental pedigree analysis, these systems have dramatically advanced with cutting-edge genetic technology and data analytics. Canada launched its first formal genetic evaluation for dairy cattle in the mid-20th century, focusing on production traits. By the 1970s, Canadian dairy scientists incorporated type traits, utilizing linear classification systems to quantify conformation characteristics. This method allowed breeders to objectively evaluate and select superior dairy cattle based on body and udder traits. 

In parallel, the USA advanced from essential herd records to sophisticated evaluations, incorporating production and type traits by the 1980s. A key milestone was the establishment of Predicted Transmitting Ability (PTAT), revolutionizing how type traits were genetically assessed. PTAT provided a standardized measure allowing breeders to predict genetic merit regarding conformation, facilitating more informed breeding decisions. 

The 1990s and early 2000s marked a crucial phase with genomic evaluations. Canada and the USA swiftly integrated genomic data, increasing accuracy and efficiency. Genomic selection enabled early identification of desirable traits, accelerating genetic progress and enhancing herd quality. Collaborative efforts between Canadian and American dairy geneticists have recently refined methodologies, incorporating advanced statistical models and extensive phenotype databases. 

Today, the genetic evaluation systems in both nations reflect a blend of historical advancements and modern innovations. Conformation and PTAT assessments are entrenched in a framework valuing genetic merit for production, longevity, health, and robustness, ensuring dairy cattle improvement remains responsive to the industry’s evolving demands.

Dairy Cattle Conformation in Canada: An Intricate Evaluation Framework 

Genetic evaluations for dairy cattle conformation in Canada meticulously examine a comprehensive set of traits. Key characteristics like stature, chest width, body depth, angularity, rump angle, and leg traits are assessed to ensure aesthetic appeal and functional efficiency, particularly for durability and productivity.  

Mammary system traits, including udder depth, teat length, and placement, are critical for milking efficiency and udder health. Feet and leg conformation, which is vital for mobility and longevity, is also evaluated.  

In Canada, conformation blends individual traits like udder attachment and teat placement into a single index. Each trait is scored meticulously, providing a detailed evaluation of an animal’s overall conformation. This approach helps breeders make informed decisions, improving dairy cattle’s genetic quality and functional efficiency. Integrating these traits into one index highlights the importance of a balanced dairy cow. Traits such as udder conformation, feet, leg health, and overall robustness work together to enhance performance and longevity in a herd.

The Canadian Dairy Network (CDN) spearheads this complex evaluation process. Utilizing advanced genetic methodologies, the CDN integrates phenotypic data with genetic models to offer accurate breeding values. This scientific approach strengthens the genetic quality of the Canadian dairy herd.  

Supporting organizations, such as Lactanet and Holstein Canada, play crucial roles. Lactanet provides comprehensive herd management services, including conformation assessments. Holstein Canada sets standards and trains classifiers for consistent on-farm evaluations.   These organizations form a network dedicated to enhancing the genetic standards of dairy cattle through diligent conformation evaluations, supporting breeders in informed selection decisions, and maintaining Canada’s reputation for producing world-class dairy cattle.

PTAT and Comprehensive Type Evaluation in the United States: A Framework for Genetic Excellence 

In the United States, dairy cattle conformation evaluation hinges on the Predicted Transmitting Ability for Type (PTAT) and a detailed type evaluation system. Unlike Canada, where conformation is a composite index of individual traits, PTAT in the United States is calculated based on the final classification score about herd mates. PTAT assesses an animal’s genetic potential to pass on type traits to its offspring, focusing on various aspects of physical structure, such as stature, body depth, and udder conformation. Critical traits include:

  • Stature: The height of the animal at the shoulders and hips.
  • Udder Depth: The distance from the udder floor to the hock affects milk production efficiency.
  • Body Depth: The depth of the ribcage, indicating overall body capacity.
  • Foot Angle: The angle and structure of the foot influence mobility and longevity.
  • Rear Leg Side View: The curvature of the rear legs when viewed from the side.

These traits are meticulously recorded and analyzed for a robust genetic evaluation. Under the USDA, the Council on Dairy Cattle Breeding (CDCB) leads the effort in collecting, analyzing, and sharing genetic and genomic evaluations. Their extensive nationwide database, sourced from dairy farms, provides comprehensive genetic insights. 

Breed-specific organizations like the Holstein Association USA and the American Jersey Cattle Association (AJCA) refine evaluations for specific breeds. They collaborate with the CDCB to ensure accurate and relevant assessments, offer educational resources to breeders, and promote best practices in genetic selection. This collaborative framework ensures that U.S. dairy farmers have access to cutting-edge genetic information, enhancing the genetic merit of dairy herds and advancing dairy cattle breeding nationwide.

Unified Yet Diverse: Genetic Indices Shaping Dairy Excellence in North America 

For decades, significant efforts have been undertaken to harmonize the evaluation of type traits and the classification programs generating the requisite data for genetic evaluations on an international scale. While substantial progress has been achieved, occasional surprises still emerge. These unforeseen developments typically pertain not to production traits but to type and management traits. 

In Canada, Conformation is quantified on a scale where each standard deviation equals five points. Conversely, the United States expresses PTAT in standard deviations. Consequently, a confirmation score of 5 in Canada generally corresponds to a PTAT score of 1 in the U.S. However, assuming a direct equivalence between a PTAT of 1 and a Conformation score of 5 can be misleading. Lactanet in Canada recently conducted an extensive study comparing over 4,000 bulls with daughters and genetic proofs in both countries to elucidate this. The correlation between the TPI and LPI was notably high at 0.93.
Interestingly, the correlation between Canada’s Pro$ and the TPI was even higher, reaching 0.95. As anticipated, production traits demonstrated strong correlations, with Milk at 0.93, Fat at 0.97, and Protein at 0.95, given that production can be measured objectively. However, the variations were more pronounced when evaluating the type of health and management traits.

Type Indexes

The correlation between PTAT in the United States and Conformation in Canada is 0.76. In the United States, the direct contribution of type to the Total Performance Index (TPI) emerges from three primary sources: the PTAT (8%), the udder composite (11%), and the feet & leg composite (6%). In Canada, these components are called Conformation, Mammary System, and Feet & Legs, respectively. A crucial point to understand is that these are composite indices composed of various individual traits within each category, and each nation applies a distinctive formula to weight these traits. Consequently, the differing weightings lead to modestly lower correlations for udders (0.80) and feet & legs (0.65). It’s also essential to recognize that both composites are adjusted in each country to be independent of stature. This adjustment allows for the specific selection of udder or leg improvements without inadvertently promoting increased stature.

Mammary System

Among the mammary system traits, evaluations of Udder Depth (0.95), Teat Length (0.94), Rear Teat Placement (0.90), Fore Teat Placement (0.87), and Fore Attachment (0.93) exhibit remarkable consistency between Canada and the United States. Nevertheless, a divergent perspective emerges with Median Suspensory (0.73), Rear Udder Height (0.78), and Rear Udder Width (0.66), which display significantly lower correlations. This disparity suggests that traits such as rear udder height, rear udder width, and suspensory ligament are appraised with varying degrees of emphasis and interpretation in each country.

Feet and Legs

Feet and legs exhibit a moderate correlation of 0.65 between Canada and the United States. Examining specific traits within this category, the rear leg side view reveals a high correlation of 0.91, indicating substantial similarity between the countries. However, the rear leg rear view (0.76) and foot angle (0.73) diverge more significantly. A noteworthy distinction lies in the traits recorded: while foot angle is commonly observed globally, Canada also measures heel depth. The rationale behind this difference stems from the susceptibility of foot angle to recent hoof trimming, a variable that does not affect heel depth. 

The overarching objective of selecting for superior feet and legs is to mitigate lameness and enhance longevity. In Canada, the mammary system exhibits a 0.25 correlation with herd life, slightly higher than the composite feet and legs score of 0.22. Yet, individual traits within this composite tell a different story. Foot angle shows a negative correlation with longevity at -0.16, whereas heel depth, boasting a positive correlation of +0.20, stands out prominently. This raises a pertinent question: why is heel depth not universally recorded over foot angle? 

Further analysis of specific traits reveals minimal impact on longevity. The rear leg side view holds a correlation of -0.08, the rear leg rear view is 0.03, locomotion is 0.05, and bone quality is a mere -0.01. Given these negligible impacts, particularly bone quality in its current linear measurement, it might be worth exploring its assessment as a medial optimum trait, balancing frailty and coarseness. 

Additionally, Canada uniquely records front legs, correlating with her life at 0.18, second only to heel depth. In the broader context of overall frame traits, stature maintains a high concordance at 0.97 between both countries. In contrast, body depth (0.71) and chest width (expressed as strength in US evaluations, 0.69) have lower correlations, highlighting regional differences in evaluation emphasis.

The Bottom Line

Examining genetic evaluations for dairy cattle conformation and type in Canada and the USA reveals distinctive approaches and converging goals, underlining the importance of tailored yet comprehensive systems. We’ve explored the evolution of genetic frameworks in both nations, highlighting Canada’s detailed evaluations and the USA’s focus on PTAT and holistic type assessment. From composite traits to specific evaluations of mammary systems and feet and legs, each country aims to boost genetic excellence in dairy cattle.  

As these systems continue to adapt to scientific advancements and industry needs, the goal remains to develop a robust, genetically superior dairy cattle population capable of thriving in diverse environments. This endeavor highlights the critical intersection of genetic science, industry priorities, and animal welfare, shaping the future of dairy cattle breeding. While methods may differ, the objective is shared: achieving dairy excellence through rigorous and innovative genetic evaluations that benefit producers, consumers, and cattle. Collaborations and continual improvements ensure  North America stays at the forefront of dairy cattle genetics, leading global dairy production

Key Takeaways:

  • The genetic evaluation systems for dairy cattle conformation in Canada and the USA have evolved with distinct methodologies, reflecting different priorities and breeding goals.
  • Canada emphasizes an intricate evaluation framework that assesses a variety of composite traits, ensuring a comprehensive understanding of a cow’s overall physical attributes.
  • In the USA, PTAT (Predicted Transmitting Ability for Type) serves as a crucial metric, further supported by detailed evaluations of specific type traits to drive genetic excellence.
  • Both nations utilize genetic indices that consider multiple aspects of conformation, significantly contributing to the genetic advancement and overall quality of dairy cattle.
  • Feet and legs, as well as mammary systems, are critical areas of focus in both Canadian and American evaluation systems, reflecting their importance in dairy cattle productivity and longevity.
  • The integration of scientific research and technological advancements has been instrumental in refining genetic evaluations, as referenced by numerous studies and scholarly articles.

Summary:

Genetic evaluation systems in dairy cattle in Canada and the USA have evolved through historical advancements and modern innovations. Canada introduced its first formal genetic evaluation in the mid-20th century, focusing on production traits. By the 1970s, Canadian dairy scientists integrated type traits and linear classification systems to quantify conformation characteristics, allowing breeders to objectively evaluate and select superior cattle. The USA advanced from essential herd records to sophisticated evaluations by the 1980s, with the establishment of Predicted Transmitting Ability (PTAT). The 1990s and early 2000s saw a crucial phase with genomic evaluations, integrating genomic data to increase accuracy and efficiency. Today, genetic evaluation systems in both countries value genetic merit for production, longevity, health, and robustness. Supporting organizations like Lactanet and Holstein Canada play crucial roles in enhancing genetic standards and maintaining Canada’s reputation for producing world-class dairy cattle.

Learn more:

Dairy Farming Showdown: Canada vs USA – Which is Better?

Explore the contrasts in dairy farming across Canada and the USA. Which nation provides superior opportunities and practices for its dairy farmers? Uncover the insights here.

Picture this: a sprawling dairy farm in rural Ontario and another in the heartland of Wisconsin. Their farming practices, regulations, and philosophies can vary dramatically despite being neighbors. This comparison reveals how geographical, economic, and regulatory factors shape dairy farming in each nation. 

Understanding these differences matters not just for farmers but also for consumers and policymakers. By examining dairy farming on both sides of the border, we uncover unique challenges, advantages, and lessons each country can learn from the other. 

We will explore: 

  • Regulations and their impact on production
  • Economic factors and dairy market trends
  • Adoption of technological advancements
  • Sustainability practices
  • Cultural influences

This comparative analysis will highlight the unique attributes of dairy farming in each country and identify opportunities for collaboration. Our journey navigates through policy landscapes, economic realities, technological advancements, and cultural nuances, providing a comprehensive understanding of this essential agricultural domain.

Tracing the Divergence: The Historical Paths of Dairy Farming in Canada and the USA 

Dairy farming in Canada and the USA evolved with distinct milestones and events shaping each country’s industry. In the USA, small-scale farms initially focused on self-sufficiency during the early colonial period. The 19th century saw significant transformation with industrialization and urbanization. Railroads allowed dairy products to reach urban markets efficiently, commercializing the industry. Key developments such as the first dairy cooperative, the cream separator, and pasteurization in the late 1800s propelled growth. 

Canada’s dairy farming history also began with small-scale, subsistence farms but took a distinctive turn with the introduction of supply management in the 1970s. This system stabilized the market by matching production with national demand, diverging from the USA’s market-driven approach. 

World War II played a critical role in both industries. In the USA, the war effort drove significant increases in dairy production, supported by technological advancements and government policies post-war. In Canada, post-war reconstruction and policies encouraged dairy farming for national food security

While both countries started with small-scale dairy farming, industrialization, innovation, historical events like World War II, and governmental policies sculpted two distinct paths. The USA’s market-driven growth contrasts Canada’s regulated approach, reflecting their unique historical contexts.

Divergent Regulatory Frameworks: Comparing Canadian and American Approaches to Dairy Farming 

Canada and the USA take notably different approaches to regulating dairy farming, each with unique mechanisms to stabilize their industries. This divergence is evident in supply management, quota systems, and government subsidies. 

Supply Management Systems: Canada operates under a stringent supply management system to balance supply and demand, ensuring farm gate prices cover production costs. This involves production quotas, controlled imports, and price adjustments, giving farmers stable prices and reduced market volatility with predictable income. 

In contrast, the U.S. dairy market operates on free-market principles, where supply and demand dictate prices. This can lead to significant price fluctuations, exposing farmers to market volatility. Fostering competitive pricing and innovation also imposes more substantial financial uncertainty. 

Quota Systems: Canada’s quota system is central to its supply management framework. Each farm is allocated a production quota, which can be bought, sold, or leased. This system prevents overproduction and stabilizes market prices, aligning output with national consumption rates. 

The U.S. lacks a nationwide quota system, relying instead on regional cooperative programs and less comprehensive state-specific initiatives. This often leads to challenges like overproduction and price suppression for American farmers. 

Government Subsidies: In the U.S., government subsidies such as the Dairy Margin Coverage (DMC) help mitigate losses due to falling milk prices and rising production costs. These subsidies provide a financial safety net for farmers during adverse market conditions. 

Canadian farmers receive government support indirectly through high tariffs on imported dairy products beyond set quotas. These tariffs protect them from competition and price undercutting, allowing them to maintain financial viability without extensive subsidies. 

These regulatory differences significantly impact farmers. In Canada, supply management and quota system stability aid long-term planning and consistent production levels, though critics argue it raises consumer prices. U.S. farmers benefit from subsidies but face greater market unpredictability. This reflects the broader agricultural policies of the two nations—Canada favors market control and domestic protection, while the U.S. leans towards market freedom and competitiveness.

Economic Dynamics of Dairy Farming: A Comparative Analysis of Canada and the USA

When comparing the economic aspects of dairy farming in Canada and the USA, numerous factors like production costs, milk prices, and profitability come into play. In Canada, the supply management system defines the economic landscape, balancing supply and demand while ensuring farm gate prices cover production costs. This system offers Canadian farmers a stable income through production quotas and import controls, shielding them from international market volatility. 

American dairy farmers, however, operate in a market-driven environment influenced by domestic and international market forces. This leads to a more volatile economic situation, which is evident in Wisconsin’s dairy crisis, where low milk prices and high production costs are standard. The USMCA aims to protect US producers, but challenges remain. 

Production costs differ notably between the two. Canadian farmers benefit from high biosecurity, animal welfare, and health standards imposed by the Canadian Food Inspection Agency, which, while costly, are offset by stable prices under supply management. American farmers often face lower regulatory costs but must invest heavily in scale and efficiency due to the lack of similar protections. 

Canadian farmers, assured by a stable pricing model, are generally better positioned against market shocks. In contrast, US farmers face fluctuating milk prices and input costs, making profitability more precarious. Thus, while Canadian dairy farmers navigate a regulated economic environment, their American counterparts deal with higher risks and potential rewards in a market-oriented system.

The Structural Composition and Scale of Dairy Farms in Canada and the USA: A Contrast in Agricultural Paradigms 

The structural composition and scale of dairy farms in Canada and the USA illustrate distinct agricultural paradigms shaped by their economic and regulatory environments. In Canada, family-owned farms thrive under a supply management system that ensures production aligns with demand and prices cover production costs. Most Canadian dairy farms have fewer than 100 cows. 

Conversely, the dairy industry in the U.S. leans towards larger, industrial-scale operations due to the lack of a supply management system. Farms in states like California and Wisconsin often house hundreds to thousands of cows to achieve economies of scale and meet market demands. 

This contrast highlights the different focuses of dairy farming in both countries. Canadian farms prioritize sustainability and local market balance, supported by strict import regulations and production quotas. In the U.S., farms face competitive pricing and global trade pressures. As a result, rural communities in Canada benefit from the stability of family-owned farms. In contrast, U.S. communities experience changes in demographics and farm labor due to the rise of industrial dairy operations

The difference in farm sizes and structures underscores distinct agricultural policies and broader socio-economic priorities, ranging from Canada’s focus on local food sovereignty to the USA’s emphasis on market competition.

Environmental Impact: Bridging Policies and Practices in Dairy Farming Across Canada and the USA 

The environmental impact of dairy farming presents intricate issues in Canada and the USA. In Canada, strict regulations set by the Canadian Food Inspection Agency shape environmental practices, covering waste management, biosecurity, and greenhouse gas emission reduction. Canadian dairy farms tend to be smaller, which can lead to easier waste management and lower emissions per farm. 

Conversely, the larger scale of American dairy farms, especially in states like Wisconsin and California, brings significant environmental challenges. However, innovative solutions like anaerobic digesters, which convert manure into biogas, are helping to manage waste and reduce methane emissions—however, the decentralized regulatory system in the US results in varied adoption of sustainable practices across states. 

Both countries aim to reduce dairy farming’s environmental footprint. Canada’s supply management system helps match production with market demand, reducing waste. Precision agriculture technologies further improve resource use efficiency. The Dairy Sustainability Alliance and federal and state programs promote practices to reduce greenhouse gas emissions and enhance nutrient management in the US. Regenerative agriculture, focusing on soil health and biodiversity, is also gaining traction. 

Though Canada and the USA face unique environmental challenges in dairy farming, their shared commitment to innovation and sustainability highlights their efforts to lessen the industry’s ecological impact. These initiatives could set new standards for dairy farming practices worldwide as global awareness grows.

Navigating Labor Dynamics in Dairy Farming: A Comparative Study of Canada and the USA 

When examining the labor dynamics in dairy farming in Canada and the USA, distinct challenges emerge, rooted in unique regulatory landscapes and economic frameworks. Both countries face a critical shortage of local labor for the demanding tasks inherent to dairy farming. 

The dairy industry largely depends on immigrant labor in the United States, especially from Latin American countries. Many workers are undocumented, exposing them to legal and job security vulnerabilities. While labor costs can be lower, this reliance on undocumented workers faces scrutiny and challenges amid tightening immigration policies. 

In contrast, Canadian dairy farms benefit from stable farm gate prices due to the supply management system, yet still encounter labor shortages driven by rural depopulation and youth disinterest in agriculture. Canada addresses this with temporary foreign worker programs, though these initiatives face criticism regarding the rights and conditions of migrant workers. 

Work conditions also vary. Under the Canadian Food Inspection Agency (CFIA), Canada mandates stringent biosecurity, animal welfare, and health standards, ensuring safer environments. The U.S. landscape is more fragmented, with labor laws differing by state, leading to varied working conditions. 

Both countries are exploring solutions to these challenges. The USA invests in automation and robotic milking systems to reduce dependence on human labor, while Canada focuses on outreach and training programs to attract young talent to agriculture. 

While there are similarities, each country’s labor dynamics in dairy farming are shaped by its socio-economic and regulatory contexts. Addressing labor shortages and improving working conditions remain critical for innovation and sustainable solutions.

Market Access and Trade Policies: Contrasting Stability and Competition in Canadian and American Dairy Farming 

Market access and trade policies shape the dairy farming landscape in Canada and the USA. Canada’s supply management system balances supply with domestic demand, insulating farmers from volatile international price fluctuations. This ensures Canadian dairy farmers receive stable income, essential for covering production costs while shielding them from foreign dairy products through steep tariffs. As a result, Canadian dairy farmers enjoy more controlled and predictable economic conditions. 

In contrast, American dairy farmers operate in a highly competitive global market, where fluctuating international prices and trade policies significantly impact profitability. The USMCA aims to protect US dairy producers, but farmers, especially in states like Wisconsin, still face immense global market pressures, often leading to financial distress. 

Canada’s regulated approach protects its dairy farmers, while the US’s market-driven model fosters competition. This divergence reflects broader economic philosophies, with each country presenting unique challenges and adaptations for their dairy farmers.

Consumer Preferences and Dairy Consumption Trends: The Dual Influence on Farming Practices in Canada and the USA

Consumer preferences and trends in dairy consumption are vital in shaping farming practices and product offerings in Canada and the USA. Canada’s demand for organic and locally produced dairy products is rising, driven by a consumer shift towards sustainability and transparency. This trend pushes Canadian dairy farmers to adopt more organic methods and adhere to stringent animal welfare standards. The supply management system supports this by ensuring local demand is met with local supply, focusing on quality.  

While there is growing interest in organic and specialty dairy products in the USA, the market is more dynamic and competitive. American consumers value sustainability and organic trends but are also driven by price sensitivity and diverse product choices. This results in various farming practices, from large-scale conventional operations to smaller niche organic farms. Economic pressures to remain competitive often lead American farmers to maximize productivity and efficiency, sometimes at the expense of smaller-scale, organic practices.  

In the USA, the impact of consumer trends on product offerings is more evident. The marketplace offers options like lactose-free, plant-based alternatives, and fortified dairy products, which compels farmers to innovate and diversify continuously. While these products are becoming popular in Canada, the regulated supply management system ensures steady production, balancing supply and demand to maintain farm gate prices and local standards.  

In summary, consumer preferences in both countries drive differences in dairy farming practices and product offerings. Canada’s regulatory framework favors stability and quality, while the USA’s market competition encourages a wide array of practices and innovation, reflecting each country’s distinct consumer bases and economic landscapes.

The Bottom Line

The landscape of dairy farming in Canada and the USA reveals a fascinating divergence shaped by historical, regulatory, and economic factors. The Canadian system’s supply management offers stability and controlled market dynamics, preventing overproduction and ensuring steady revenue. In contrast, with minimal market intervention, the American approach exposes farmers to greater volatility and potentially higher rewards through market-driven forces. 

Economically, production costs and competitive pressures differ starkly, influenced by trade policies and consumer trends. Structurally, Canadian dairy farms are generally smaller and more consistent in scale, while American farms vary widely in size due to market competition. Environmental practices also differ and are guided by regulatory frameworks and regional priorities. 

These divergent paths reflect broader agricultural paradigms and societal values, affecting farmers’ livelihoods and the wider economic and environmental landscape. As global market dynamics and consumer preferences evolve, the insights from these practices may shape future agricultural policies on both sides of the border.

Key Takeaways:

  • Canada and the USA have distinct historical paths in dairy farming, influenced by different regulatory frameworks.
  • Canada’s supply management system offers stability but raises concerns about competition and wealth distribution among farmers.
  • The US dairy market is more competitive, leading to varied economic outcomes for farmers but increased market flexibility.
  • Structural differences in farm sizes impact environmental policies, with Canada leaning towards smaller farms and the USA having larger, industrial operations.
  • Environmental regulations in both countries aim to mitigate the ecological footprint of dairy farming, although strategies differ.
  • Labor dynamics highlight the reliance on foreign labor in the USA, whereas Canada faces different labor market challenges in dairy farming.
  • Trade agreements like the USMCA play a pivotal role in shaping market access, with gradual changes anticipated in TRQs affecting both nations.
  • Consumer preferences drive farming practices, with trends in dairy consumption influencing operational decisions in both Canada and the USA.

Summary:

This analysis examines the unique characteristics of dairy farming in Canada and the USA, highlighting differences in their practices, regulations, and philosophies. The USA’s dairy farming history began with small-scale farms, followed by industrialization and urbanization in the 19th century. Canada’s dairy farming began with subsistence farms and evolved with supply management in the 1970s. World War II played a significant role in both industries, with the USA driving increased dairy production and Canada promoting it for national food security. Canada operates under strict supply management to balance supply and demand, while the USA invests in automation and robotic milking systems to reduce dependence on human labor.

Learn more:

USA – Leading the way in the Dairy Genetics’ World

In honor of Independence Day in the United States, the Bullvine decided to take a closer look at the top USA bred bulls.  In the world market, indexes like TPI and NM$ dominate much of the discussion. But, in typical Bullvine form, we decided to look at things a little differently.  Instead of ranking them all by TPI (Holstein USA’s national index – Read more Everything You Need To Know About TPI and LPI), The Bullvine decided to rank them by BPI (Read more – Bullvine Performance Index). Note that all animals are percentage ranked compared to the highest bull (Mr. Lookout P Enforcer).

Top BPI Proven Sires

NameMilkFatProtNM$PTATRelBPI
DE-SU OBSERVER160261527922.70.9999.8%
BADGER-BLUFF FANNY FREDDIE123654437791.570.9998.7%
DE-SU GULF148973405492.80.9292.9%
MORNINGVIEW LEVI87668546931.40.9591.3%
COYNE-FARMS SHOTLE YANCE181575545161.90.9389.6%
DE-SU HISTORY152484585672.410.9389.2%
LONG-LANGS OMAN OMAN126281735882.170.9988.3%
END-ROAD O-MAN BRONCO-ET177047625122.080.9988.1%
O-BEE MANFRED JUSTICE7816346643-0.070.9987.4%
VA-EARLY-DAWN SUDAN CRI126882535381.790.9286.8%

Top BPI Genomic Sires

NameMilkFatProtNM$PTATRelBPI
MR LOOKOUT P ENFORCER173174677082.750.73100.0%
MR LOOKOUT PESCE ALTA5G102053466.123.960.7298.4%
DE-SU JEROD 1223161089518472.710.7497.5%
COYNE-FARMS JABIR144195558852.660.7296.7%
RMW ANCHOR147498477163.040.7294.8%
MR LOOKOUT P EMBARGO148594566443.380.7293.8%
DE-SU DISTINCTION 111301754976483430.7293.8%
WELCOME ARMITAGE PESKY102492637442.30.7293.6%
SULLY MCCORD 269141390537803.170.7192.9%

Top BPI Polled Sires

NameMilkFatProtNM$PTATRelBPI
TIGER-LILY LADD P-RED-4030314773.030.7583.8%
SANDY-VALLEY CHIPPER-P137929465682.60.7281.5%
DA-SO-BURN MOM EARNHARDT P155776735981.970.7481.0%
PINE-TREE OHARE-P207353556821.920.7478.7%
KERNDTWAY ELIMINATOR-P60458234882.430.7378.0%
HICKORYMEA PARKER P19133205422.240.7578.0%
RI-VAL-RE OBSRVR DOLO-P114349365712.780.7376.6%
LIRR SPECIAL EFFECTP-RED12239175771.780.7375.5%
RI-VAL-RE OBSRVR DAVE-P136753465392.540.7374.9%
SANDY-VALLEY COLT P-RED70510264681.780.7573.3%

It is interesting to see just how closely ranked the top Genomic sires and proven sires in the USA are.  Unlike Canada that recently adjusted its LPI formula to bring indexes closer together (Read more: Canadian LPI Rescaling Explained (April 2013)), the US has always had a very close ranking among top sires.  Even the most progressive Genomic breeder, should still consider using sires like DE-SU OBSERVER, BADGER-BLUFF FANNY FREDDIE and DE-SU GULF.  Having said that, many may choose to use the highest of their sons in order to stay ahead of the rest.

Another interesting note is how quickly the top polled sires are catching up to their non-polled counterparts.  Only a year ago the top polled sires would not have been within 30% of the top non-polled.  These days they are within 20% and at this current rate, in another 5 years they will be at the same level.

The Bullvine Bottom Line

There is no question that, when you look at the top bull lists around the world, the USA dominates (Read more: What the Experts Will Tell You about Who Is Winning the Genetic Improvement Race).  Between the use of TPI and NM$ US breeders have been leaders in the identification of top bloodlines for health, fertility and profitability.  The question now becomes, “Can they stay on top?”

 

Get original “Bullvine” content sent straight to your email inbox for free.

 

Send this to a friend