Archive for productive cows

The Science of Cow Behavior: Revolutionizing Dairy Farm Management

Discover how cow personalities can boost your farm’s efficiency. Understanding behavior can transform your management practices. Curious? Read on.

Summary: Have you ever wondered why some of your cows seem more curious while others prefer to stay in the background? Understanding cow personalities can revolutionize the way you manage your herd. Dr. Trevor DeVries, a professor at the University of Guelph, has revealed that cow personalities significantly impact behavior, health, and overall production, such as friendly cows thriving in groups and fearful cows feeding less. By leveraging these traits through better management techniques and technology integration, you can foster healthier, more productive cows and a more efficient farm.

  • Leveraging cow personalities can enhance herd management, improving cow welfare and farm efficiency.
  • Cows exhibit a range of personalities, including curious, social, and fearful traits.
  • Personality traits affect cows’ feeding, social interactions, and coping mechanisms.
  • Proper identification and understanding of these traits enable targeted management strategies.
  • Utilizing technology to monitor cow behavior helps in tailoring management practices to individual needs.
  • Research by Dr. DeVries underscores the link between cow personality traits and their overall productivity and health.
  • Implementing personality-based strategies can lead to more productive and less stressful environments for the cows.
Dr. Trevor DeVries, cow behavior, farm management, personality features, productive cows, efficient cows, healthy cows, cow personalities, behavior, health, production, interest, exploratory, grazing locations, environmental changes, milk production, fear, feeding, nutritional intake, milk output, social conduct, sociable cows, group situations, harmonious social connections, friendly cows, aggressive cows, disturbances, stress, herd, health, technology, monitoring, behavior, personality features, dairy farm management, group housing, feeding strategies, technology integration, breeding decisions, challenges, individuality, money, time, farmers

Have you ever considered the impact of cow personalities on your dairy farm? It’s not just a matter of curiosity-recognizing each cow’s distinct characteristics could be a game-changer for your farm management. Cow personality influences their behavior, productivity, and general well-being. By understanding and effectively managing these features, you can improve your herd’s health and happiness and boost your farm’s efficiency and profitability. Dr. Trevor DeVries, PhD, is a professor and Canada Research Chair in the Department of Animal Biosciences at the University of Guelph. His extensive research on cow behavior has provided groundbreaking insights into using personality features for enhanced farm management. “Our goal is to have cows that are more productive, efficient, and in better health,” according to Dr. DeVries. Understanding individual cow attributes can improve feeding methods, customized milking management techniques, and overall herd efficiency and well-being. Intrigued? Let’s explore the fascinating world of cow personalities and how to use these insights to increase your farm’s efficiency and profitability.

On a recent episode of the PDPW – The Dairy Signal podcast, Professor of Animal Biosciences Dr. Trevor DeVries, a leading expert in the field, discussed his team’s extensive research at the University of Guelph. Their research aims to understand the relationship between cow personality and its impact on management, providing valuable insights for dairy farmers and agricultural professionals.

Have You Ever Noticed How Not All Cows Act the Same? 

Cows, like humans, have distinct personalities, and these characteristics may substantially impact their behavior, health, and overall production.

Consider this: sure, cows are inherently more interested and exploratory. These adventurous cows may actively visit new grazing locations to adjust to environmental changes swiftly. As a result, they may exhibit superior development because they actively seek food, resulting in improved health and increased milk production.

Cows that are more afraid may pause, indicating a reluctance to investigate. This habit may result in less frequent feeding, lowering nutritional intake and milk output. These cows may suffer more in a competitive eating situation since more dominant cows often push them aside.

Let’s discuss social conduct. Sociable cows may flourish in group situations, seamlessly blending into herds and sustaining harmonious social connections. In contrast, less friendly or aggressive cows may create disturbances, causing stress for themselves and the herd. This stress might harm their health and milk production.

Real-world examples? Think about robotic milking systems. Cows with brave and exploratory attitudes often learn rapidly to these systems, making numerous successful trips. These cows may produce more milk due to their effective milking routines. Meanwhile, timid or scared cows may need more time and training to get habituated, which might initially reduce their production.

Understanding these personality qualities helps us develop better management techniques. For example, providing pleasant human connections early on might help minimize fear. Cows that are less agitated and more comfortable with people and unfamiliar situations are more likely to be healthy and productive in the long term.

Recognizing and catering to the many personalities in your herd may dramatically improve their well-being and your farm’s production. It’s about making the most of each cow’s distinct qualities.

Embrace Technology: Tools to Monitor Your Herd’s Unique Personalities

Farmers may now use various techniques and technology to monitor cow behavior and personality features efficiently. Sensors, software, and mobile apps are built expressly for dairy production.

  • Wearable Sensors: Activity monitors, pedometers, and neck collars may monitor a cow’s movement, feeding habits, and even physiological signals like rumination. For example, the Allflex Livestock Monitoring system provides real-time information on each cow’s activity and health state.
  • Video Surveillance: High-definition cameras equipped with AI technologies can assess cow behavior patterns. CowManager, for example, uses ear tag sensors and video processing to give insights into cow health and early detection of infections.
  • Mobile Apps and Software: Smartbow and AfiClick provide user-friendly interfaces for farmers to get warnings, follow behavioral changes, and make data-driven management choices.

Combining these technologies may help farmers understand and manage their cows’ personalities, improving animal welfare and farm output.

Understanding Cow Personalities 

Dr. DeVries has spent years researching dairy cow personalities, examining how these characteristics influence their behavior and output. His study focuses on understanding cows’ distinct behavioral traits and how they affect many areas of farm management.

Combined Arena Test 

Dr. DeVries employs a method known as the combined arena test to study these behaviors. This test involves three main stages, each designed to observe and measure specific aspects of cow behavior: 

  • Novel Environment (NE): The cow is placed alone in an unfamiliar pen for 10 minutes to observe exploration behaviors.
  • Novel Object (NO): A unique object, such as a pink bin, is introduced to the pen for 5 minutes to see how the cow interacts with new, inanimate stimuli.
  • Novel Human (NH): A person the cow is unfamiliar with enters the pen and stands still for 10 minutes, allowing researchers to gauge the cow’s reaction to strangers.

These stages help researchers score cows on traits like activity, boldness, and sociability. The data collected is then analyzed to identify consistent behavioral patterns. 

Key Findings 

Dr. DeVries’s research has revealed some critical insights: 

  • Milk Yield and Behavior: Cows with higher milk yields tend to be less active and exploratory in low-stress environments but can outperform in high-competition settings.
  • Feeding Competition: Personality traits, such as fearfulness, greatly influence how cows respond to more crowded feed bunks.
  • Robotic Milking Systems: Bold and active cows adapt more quickly and efficiently to robotic milking systems, which is crucial for optimizing these technologies.
  • Genetic and Environmental Influences: Both genetics (nature) and early life experiences (nurture) shape cow personalities. Positive human interactions early in life can reduce fearfulness and improve overall cow behavior.

Implications for Farmers 

These findings suggest practical applications for dairy farm management: 

  • Group Housing: Understanding cow personalities can inform better grouping strategies to minimize stress and enhance productivity.
  • Feeding Strategies: Tailored feeding strategies can be developed to ensure even the more fearful or less dominant cows meet their nutritional needs.
  • Technology Integration: Knowing which cows adapt best to technologies like robotic milkers can help train and manage newer systems.
  • Breeding Decisions: Selective breeding based on personality traits could lead to a more manageable and productive herd over time.

Dr. DeVries’ study provides dairy producers with significant insights into how cow personalities influence farm operations, opening the way for more efficient and welfare-focused management approaches.

Recognizing Cow Personalities: The Game-Changer for Your Farm 

Here’s how to use this knowledge to improve grouping, feeding tactics, and general management.

Grouping Cows Effectively 

When classifying cows, consider their personality features. For example, more timid cows may benefit from being paired with more calm animals to avoid stress and hostile interactions. In contrast, brave or dominant cows may be grouped because they adapt better in competitive circumstances.

The research found that cows with diverse behavioral features, such as being more explorative or daring, often behave differently in comparable circumstances. This implies that you tailor the environment for each group depending on their behavior, improving overall well-being and productivity.

Optimized Feeding Strategies 

Understanding various personality types might help you adopt more successful feeding practices. Automated milking systems may help daring and explorative cows by providing tailored feeding regimens and ensuring enough nutrition.

Robotic milking systems provide a realistic example. Research has revealed that less scared cows are more likely to use automated feeders successfully, resulting in higher milk output. Feeding practices tailored to the cows’ personalities may increase production and health.

Improving Overall Management 

Understanding cow personalities might be helpful in everyday management responsibilities. For example, suppose you see a cow’s aggressive or shy behavior. In that case, you may adjust your handling skills to alleviate stress and promote collaboration during milking or veterinary treatment duties.

Positive human interactions beginning at a young age help produce happier and less scared cows. Practical applications include spending extra time with calves and ensuring they get frequent, good human interaction to foster trust and lessen fear in maturity.

Finally, recognizing and applying cow personality features may result in a more peaceful herd and higher farm output. Embracing this strategy helps the cows streamline management processes, resulting in a win-win scenario for farmers and animals.

Challenges in Implementing Cow Personality Insights 

One of the main challenges is appropriately identifying each cow’s individuality. While tests such as the combined arena test provide some data, they demand money and time that farmers may not have. Furthermore, the changing dynamics of a herd might need to be clarified for these estimates.

Another aspect is the balance between nature and nurture. Cow personalities are shaped by the interaction of genetic inheritance (nature) and early-life experiences or environmental effects. Cows may inherit features from their parents, but how they are nurtured, and the situations they face may drastically alter these qualities. For example, calves with more human contact early in infancy are less apprehensive and more straightforward to handle.

Despite advances in understanding cow behavior, current studies remain limited. Much research is based on limited sample numbers or controlled situations, which may only partially apply to different farm settings. Furthermore, how these personality qualities could alter over time or under different farm situations is still being determined. As a result, more intensive, long-term research is required to properly understand how these variables interact and create practical applications for dairy producers.

More studies are required to improve these technologies, making them more accessible and valuable in daily agricultural operations. Expanding research to cover additional breeds, more significant sample numbers, and other farming procedures will offer a more complete picture of cow personalities and management.

The Bottom Line

Understanding that each cow has a distinct personality is more than an intriguing discovery; it’s a game changer in dairy production. Recognizing and classifying cows based on their behavior, improving feeding tactics, and customizing overall management approaches may lead to more excellent production, animal welfare, and a more efficient farm.

Implementing ideas from the cow personality study may provide significant advantages. For example, more curious and daring cows may produce more milk and quickly adapt to new technologies such as milking robots. In contrast, recognizing which cows are more afraid or less active might assist in adjusting management tactics to reduce stress and enhance overall herd health.

So, what is the takeaway? The future of dairy farming is more than simply better technology and feed; it’s also about individualized cow management. Paying attention to your cows’ distinct characteristics might result in increased output and happier animals. It’s a developing field, but the prospective advantages are worth the effort.

Learn More: 

Decoding the Impact of Housing Systems on Digital Dermatitis in Dairy Cows: A Genetic Study

Delve into the influence of housing systems on digital dermatitis in dairy cows. Could genetic evaluations pave the way for enhanced bovine health across varied living conditions? Uncover the research insights here.

Imagine walking barefoot on gravel daily; the discomfort of digital dermatitis (DD) in dairy cows feels similar. This painful hoof disease significantly hampers cows’ mobility, milk production, and the economic health of dairy farms. 

The environment in which cows are housed plays a critical role in DD’s incidence and severity. Housing systems such as conventional cubicle barns (CON) and compost-bedded pack barns (CBPB) have distinct impacts on disease management. Understanding these housing-related nuances is vital for farmers and researchers working to reduce DD’s impact. 

This research utilizes detailed phenotyping data from over 2,980 observations of Holstein-Friesian and Fleckvieh-Simmental cows on ten farms. It investigates the genetic variances linked to DD stages: sick, acute, and chronic. Through genome-wide association studies (GWAS), the study identifies potential candidate genes and assesses genotype × housing system interactions. This comprehensive analysis seeks to uncover genetic factors that can inform breeding programs and enhance animal welfare, regardless of their rearing environment. 

Introduction: Understanding Digital Dermatitis in Dairy Cows

Digital Dermatitis (DD) is an infectious disease impacting the bovine foot, particularly the plantar skin bordering the interdigital cleft. This condition ranges from initial lesions to chronic, painful wounds, affecting dairy cows‘ mobility and well-being. 

The development of DD involves a mix of environmental, genetic, and management factors. Housing systems, especially conventional cubicle barns, create conditions ripe for DD, with moisture and contamination fostering pathogen growth. Nutritional imbalances, poor foot hygiene, and milking routines further increase risk. Notably, genetic predispositions also play a role; some cattle lines are more susceptible, emphasizing the need for genetic research to combat DD. 

The economic and welfare impacts of DD are significant. Economically, it causes losses through reduced milk production, higher veterinary costs, and culling of severely affected cows. Welfare-wise, the pain and lameness from DD seriously affect cattle comfort and health, raising ethical concerns in livestock management. Therefore, addressing DD with better housing, management practices, and genetic selection is crucial for sustainable dairy farming.

Exploring Housing Systems: Cubicle Barns vs. Compost-Bedded Pack Barns

Housing systems play a pivotal role in dairy productivity and cow health and welfare. The primary systems include conventional cubicle barns (CON) and compost-bedded pack barns (CBPB), each impacting the Prevalence and severity of digital dermatitis (DD). 

In CON setups, cows rest on mats or mattresses over concrete floors. This controlled environment supports restful ruminating but can worsen claw disorders due to constant exposure to manure and poor ventilation. Conversely, CBPB systems offer cows a spacious environment with composting bedding of sawdust or wood shavings, which is more comfortable and supports better hoof health by reducing pathogens through microbial activity. 

The flooring material is crucial. Concrete floors in CON systems retain moisture and manure, fostering bacteria that cause DD. CBPB systems’ drier, more sanitary bedding leads to fewer DD incidences. 

Hygiene practices, essential for DD control, differ by system. CON systems require regular scraping and washing, while CBPB systems depend on managing bedding moisture and microbial activity. Both approaches aim to reduce bacterial loads and curb DD spread. 

Cow comfort, dictated by the housing system, also affects DD prevalence. CBPB’s spacious, free-roaming environment reduces stress and improves immune function, making cows less prone to DD. In contrast, CON systems’ restrictiveness can increase anxiety and susceptibility to claw disorders. 

In summary, the choice between cubicle barns and compost-bedded pack barns significantly impacts cow health and the incidence of DD. Prioritizing comfort and hygiene in housing systems leads to healthier, more productive cows with fewer claw disorders.

Unveiling Genetic Interactions Between Housing Systems and Digital Dermatitis in Dairy Cows

ParameterConventional Cubicle Barns (CON)Compost-Bedded Pack Barns (CBPB)Overall Dataset
Number of Observations1,4501,5302,980
Number of Cows8118991,710
DD-Sick Prevalence (%)HigherLower20.47%
DD-Acute Prevalence (%)HigherLower13.88%
DD-Chronic Prevalence (%)HigherLower5.34%
Heritability – DD-Sick0.160.160.16
Heritability – DD-Acute0.140.140.14
Heritability – DD-Chronic0.110.110.11
Genetic Correlation (CON and CBPB) – Same Traits~0.80N/A
Genetic Correlation – Within Traits (DD-Sick, DD-Acute, DD-Chronic)0.58 – 0.81
Significant Candidate Genes for DD-Sick and DD-Acute (SNP Main Effects)METTL25, AFF3, PRKG1, TENM4
Significant Candidate Genes (SNP × Housing System Interaction)ASXL1, NOL4L (BTA 13)

The genetic study on digital dermatitis (DD) in dairy cows examined the influence of different housing systems on the disease. This research aimed to understand the interaction between cow genotypes and their environments. It focused on DD stages—DD-sick, DD-acute, and DD-chronic—in conventional cubicle barns (CON) and compost-bedded pack barns (CBPB). Herds were selected to ensure similarities in climate, feeding, and milking systems. Still, they differed in housing setups to isolate housing-specific impacts on DD. 

Using 2,980 observations from 1,710 cows and 38,495 SNPs from 926 genotyped cows after quality control, the study employed single-step approaches for single-trait repeatability animal models and bivariate models to estimate genetic parameters and correlations. GWAS identified specific SNPs and their interactions with housing systems. Heritabilities for DD stages and genetic correlations between the same traits in different housing systems were also calculated. 

Results showed higher DD prevalence in CON systems compared to CBPB. Heritabilities were 0.16 for DD-sick, 0.14 for DD-acute, and 0.11 for DD-chronic, with a slight increase in CON. Genetic correlations between the same DD traits in different housing systems were around 0.80, indicating minimal genotype × housing system interactions. Correlations among DD stages ranged from 0.58 to 0.81, showing their interconnectedness regardless of the housing system. 

GWAS results were varied for DD-acute and DD-chronic, indicating complex pathogenesis. Candidate genes affecting disease resistance or immune response included METTL25, AFF3, PRKG1, and TENM4 for DD-sick and DD-acute. SNP × housing system interactions highlighted ASXL1 and NOL4L on BTA 13 for DD-sick and DD-acute. 

For dairy farmers, these findings underline the impact of housing systems on the Prevalence and progression of DD and the potential genetic implications. Our comprehensive study provides actionable insights for dairy farmers globally. 

Notably, DD prevalence was significantly higher in CON, highlighting the challenging environment of cubicle barns compared to the more welfare-oriented CBPB system. These insights are crucial as they affect animal health and have economic ramifications, including reduced milk production and increased treatment costs. 

We examined genetic evaluations across these environments and found that heritabilities for DD traits (DD-sick, DD-acute, DD-chronic) were slightly higher in the CON system. Still, overall genetic parameters remained consistent across both systems. Despite different housing practices, the genetic predisposition to DD remains relatively stable. 

Genetic correlations between different DD stages (ranging from 0.58 to 0.81) suggest a common underlying genetic resistance mechanism crucial for developing targeted breeding programs. Furthermore, GWAS pinpointed several candidate genes, such as METTL25, AFF3, PRKG1, and TENM4, with significant implications for disease resistance and immunology. 

This research underscores the importance of genotype-environment interactions, even though these were minimal in housing systems. Integrating genomic insights with practical management strategies can improve animal well-being and farm productivity as the dairy industry evolves. 

By applying these findings, dairy farmers can make informed decisions about housing systems and genetic selection, enhancing economic and animal health outcomes. This study calls for the industry to adopt evidence-based practices rooted in rigorous scientific research.

Genetic Evaluations: From Genotypes to Phenotypes

The research meticulously analyzed data from 1,311 Holstein-Friesian and 399 Fleckvieh-Simmental cows, totaling 2,980 observations across three digital dermatitis (DD) stages: DD-sick, DD-acute, and DD-chronic. This granular phenotyping clarifies how DD stages manifest in different environments. By categorizing it into conventional cubicle barns (CON) and compost-bedded pack barns (CBPB), the study highlights the environmental impact on genetic expressions related to DD. 

Quality control of 50K SNP genotypes refined the data to 38,495 SNPs from 926 cows. This dataset formed the basis for estimating genetic parameters through single-step approaches. The genetic correlations between DD traits and housing systems uncovered genotype × environment (G×E) interactions. 

Heritability estimates were 0.16 for DD-sick, 0.14 for DD-acute, and 0.11 for DD-chronic, indicating the genetic influence. Notably, these estimates and genetic variances slightly rose in the more stressful CON environment, indicating heightened genetic differentiation under challenging conditions. Genetic correlations between the same DD traits across different housing systems were around 0.80, showing minimal G×E interactions. 

Genome-wide association studies (GWAS) revealed heterogeneous Manhattan plots for DD-acute and DD-chronic traits, indicating complex biological pathways. Despite this, several shared candidate genes like METTL25, AFF3, PRKG1, and TENM4 were identified, showing their potential role in managing DD through genetic selection. 

For SNP × housing system interactions, genes such as ASXL1 and NOL4L on chromosome 13 were relevant for DD-sick and DD-acute. These findings illustrate how specific genetic markers interact with environmental factors. Overall, the minimal impact of genotype × housing system interactions supports robust genetic evaluations for DD across diverse environments, aiding broader genetic selection strategies in dairy cow populations. 

The Bottom Line

This study highlights the importance of detailed phenotyping and genetic evaluations in understanding digital dermatitis (DD) in dairy cows. By examining 1,710 Holstein-Friesian and Fleckvieh-Simmental cows in conventional cubicle barns (CON) and compost-bedded pack barns (CBPB), the research provided crucial insights into the Prevalence and heritability of DD. It found slightly higher genetic differentiation in the more challenging CON environment but minimal genotype × housing system interactions, indicating a limited impact on genetic assessments. Essential genes like METTL25, AFF3, PRKG1, and TENM4 were identified as necessary for disease resistance and immunology. 

Understanding how housing systems affect DD is crucial. It helps improve management practices to reduce DD prevalence, enhancing cow welfare and farm productivity. It also improves genetic selection by identifying traits that enhance DD resistance in specific environments, benefiting long-term herd health and sustainability. This insight is vital for today’s dairy operations and future breeding programs. 

Future research should delve into the long-term impact of housing systems on genetic traits linked to DD resistance. Exploring other environmental and management factors, like nutrition and milking routines, would offer a fuller understanding of DD. Personalized genetic interventions tailored to specific farm environments could be a game-changer in managing this disease in dairy cows.

Key Takeaways:

  • The study analyzed 2,980 observations of DD stages, differentiating between DD-sick, DD-acute, and DD-chronic across two housing systems: conventional cubicle barns (CON) and compost-bedded pack barns (CBPB).
  • Heritabilities for DD were slightly higher in the CON environment, suggesting a stronger genetic differentiation of the disease in more challenging conditions.
  • Despite varying heritabilities, genetic correlations between the same DD traits in different housing systems were high, indicating minimal genotype × housing system interactions.
  • GWAS highlighted significant candidate genes such as METTL25, AFF3, and PRKG1, which play roles in disease resistance and immunology.
  • This research underscores the importance of considering housing systems in genetic evaluations to enhance disease management and improve cow welfare.


Summary: Digital Dermatitis (DD) is a severe hoof disease that affects dairy cows’ mobility, milk production, and farm economic health. Housing systems like conventional cubicle barns (CON) and compost-bedded pack barns (CBPB) have distinct impacts on disease management. CON setups, which support restful ruminating but can worsen claw disorders due to constant exposure to manure and poor ventilation, have higher DD-sick prevalence than CBPB systems (5.34%). Both approaches aim to reduce bacterial loads and curb DD spread. CBPB’s spacious, free-roaming environment reduces stress and improves immune function, making cows less prone to DD. A study found higher DD prevalence in CON systems compared to CBPB. Understanding how housing systems affect DD is crucial for improving management practices, enhancing cow welfare, and improving genetic selection.

Send this to a friend