Archive for Injury

The Ultimate Guide to Breeding Dairy Cattle: Tips for Optimal Milk Production

Get expert tips on breeding dairy cattle to increase milk production. Want to improve your herd’s performance? Find out the secrets to successful dairy farming here.

In the dynamic world of agriculture, particularly in dairy farming, the importance of proper breeding procedures cannot be overstated. The art of breeding dairy cattle is about increasing milk output, herd health, and productivity and meeting the evolving global demand for dairy products. Farmers and breeders are at the forefront of this challenge, using their enhanced genetic knowledge and precise procedures to maximize their herds via selective breeding.

Proper breeding techniques offer numerous benefits, including: 

  • Increased milk production: Breeding for traits such as high milk yield and better milk composition ensures a consistent supply of quality dairy products.
  • Improved herd health: Selecting for disease resistance and overall robustness reduces veterinary costs and enhances the well-being of the cattle.
  • Genetic diversity: Maintaining a diverse genetic pool helps prevent inbreeding depression and promotes adaptability to changing environmental conditions.

 Efficient breeding strategies produce more productive cattle and translate to higher economic returns for dairy farmers. This financial aspect of breeding can empower farmers and motivate them to make strategic breeding decisions.” Practical breeding is the cornerstone of sustainable dairy farming; it creates a ripple effect that touches every aspect of production, from milk yield to herd health.”

Join us as we dig into the procedures and tactics involved in breeding dairy cattle, providing an overview for both experienced breeders and newbies.

Recognizing Distinctive Attributes: A Deep Dive into Dairy Cattle Breeds 

Understanding dairy cow breeds entails knowing their unique traits and how they affect milk production efficiency and quality. Notable breeds include Holstein, Jersey, Guernsey, and Ayrshire, each with its own set of benefits and concerns for dairy producers.

Holsteins, recognized for their stunning black and white markings, are dairy giants with remarkable production potential. A Holstein cow can produce roughly 25,000 pounds of milk annually, making it the ideal option for large-scale dairy farms. While their milk is large in volume, it usually has a lower butterfat percentage, which is essential depending on the final product specifications.

Jerseys, with their distinctive light brown coats and expressive eyes, are substantially smaller than Holsteins yet produce milk with much greater butterfat content. This characteristic makes Jersey milk especially desirable for butter and cheese manufacturing. Although they produce less milk overall (about 17,000 pounds per year), their efficiency in converting feed to high-quality milk is unparalleled, making them a prized breed for specialized dairy products.

Guernsey: This breed, recognized for its characteristic reddish-brown and white appearance, balances milk volume and quality. Guernseys produce milk high in butterfat and beta-carotene, which gives the milk its distinguishing golden color and other nutritional advantages. This breed is known for its gentle demeanor and simplicity of maintenance, with an average yearly milk output of 18,000 pounds.

With exquisite red and white markings, Ayrshire cattle are hardy and versatile, making them suitable for various agricultural settings. Their milk is noted for its butterfat and protein balance, which is ideal for dairy products. Ayrshires typically produce around 20,000 pounds of milk each year, and their robust constitution allows them to live in less-than-ideal circumstances, resulting in a steady and predictable milk supply.

Understanding these breed-specific features allows dairy producers to maximize their operations by choosing the best breed for their production objectives, environmental circumstances, and market needs. Each breed’s distinct characteristics help create a diversified and robust dairy sector that caters to a wide range of customer tastes and nutritional requirements.

The Role of Genetic Principles and Heredity in Dairy Cattle Breeding 

Understanding genetic concepts and heredity in dairy cattle is critical to establishing a successful dairy enterprise. Genetic factors influence milk output, illness resistance, and general health. Farmers may dramatically increase their herds’ production and lifespan by choosing appropriate genetic features.

The primary goal of genetic improvement in dairy cattle is to enhance qualities that directly influence milk output. This involves choosing animals with genetic solid potential regarding milk output, fat, and protein content. Modern genetic selection employs advanced methods like genomic testing, which enables the identification of desired features at a young age. This approach evaluates DNA markers connected to desirable features, allowing farmers to make more educated breeding selections and ensuring the future productivity of their herds.

In addition to milk production, other essential characteristics include udder health, fertility, and lifespan. Selecting these features ensures that the cows produce a large amount of milk while being healthy and productive throughout their lives. For example, cows with genetic resistance to common illnesses like mastitis have a superior overall health profile, requiring fewer medical treatments and lengthening their productive lives.

Selective breeding is carefully selecting sires and dams with desired genetic features. Artificial insemination (AI) is routinely employed, with top-performing bull sperm sent globally. These final extension packages contain roughly 2030 million spermatozoa at freezing, providing a diverse genetic background and the capacity to improve certain qualities across many herds.

The significance of choosing the appropriate genetic features cannot be emphasized enough. It results in increased milk output and improves the overall sustainability and efficiency of dairy farming. Investing in better genetics allows dairy producers to build a robust and prolific herd capable of addressing the demands of contemporary dairy production.

Strategic Selection: Ensuring Long-Term Herd Productivity and Health 

When choosing breeding stock, you must consider many essential elements to maintain your herd’s long-term production and health. The cornerstone of a thriving dairy company is the precise selection of bulls and cows, which considers many variables meant to boost milk output, improve disease resistance, and retain exceptional physical qualities.

First and foremost, the history of milk production must be considered. Cows and bulls from high-yielding genetic lines are likelier to pass on beneficial qualities to their progeny. Examine data that show the average milk output every lactation cycle, paying particular attention to any trends in peak milk flow. This information is critical for predicting the productive potential of future generations.

Comprehensive health records are equally vital. A strong healthcare history displays individual resilience and reveals a hereditary vulnerability to specific ailments. Prioritizing high immunity and low illness incidence breeding stock may cut veterinary expenditures and enhance herd health. These records require regular checks for common infections like mastitis and Johne’s disease.

Furthermore, physical qualities play an essential part in the choosing process. Assessing physical features includes more than looks; it also includes structural soundness, udder conformation, and bodily capacity, all of which contribute to an animal’s efficiency and lifespan. Bulls should have a muscular and well-proportioned build, which indicates high health and breeding potential. At the same time, cows should have well-attached udders and a strong frame for increased milk output.

By carefully considering these factors, dairy producers may make educated decisions to increase their herd’s genetic pool, leading to long-term production and health gains. This technique assures quick profits while promoting long-term success and resilience in the ever-changing dairy farming context.

Exploring Essential Breeding Methods: Balancing Genetic Control and Practicality 

Understanding the various breeding strategies available for dairy cattle is critical for increasing milk output and maintaining herd health. Natural breeding, artificial insemination (AI), and embryo transfer are some of the most often-used approaches.

Natural breeding is letting bulls mate with cows, which may be simple but does not control for specific genetic characteristics. Pros: This approach requires less effort and may provide a natural breeding environment, which benefits animal welfare. Cons: It gives issues in maintaining and choosing desirable features, often resulting in unanticipated genetic variability. The approach may promote disease transmission, reducing herd health and milk output.

Artificial insemination, on the other hand, provides more genetic control. Farmers may improve their herd genetics and milk output using semen from genetically better bulls. Pros: Artificial intelligence broadens the genetic pool, providing global access to better genes. Furthermore, it lowers the risk of disease transmission and may be timed to maximize conception rates. Cons: It takes specialized work and exact timing to be successful, and there are expenses involved with semen collection and storage. Nonetheless, the benefits of higher milk production and herd health exceed the downsides.

Embryo transfer (ET) is the apex of genetic selection; it allows producers to implant embryos from better cows into surrogate mothers. This strategy speeds up genetic development by rapidly generating several offspring from exceptional cows. It may also significantly boost the milk production potential of the herd. Cons: However, it is the most labor-intensive and costly procedure, requiring specialized equipment and veterinary knowledge. Furthermore, the early success rates may be lower than AI’s, making the process more difficult.

Optimizing Dairy Cattle Nutrition and Health Management for Maximum Milk Production 

Understanding the fundamental importance of nutrition and health management is critical for any cow breeder seeking to maximize milk output. Proper nutrition is more than just feeding the herd; it is also about providing a balanced diet that meets the cattle’s physiological demands while increasing productivity and general well-being. A complete nutrition plan includes high-quality forages, cereals, and nutrient-dense supplements. For example, a diet heavy in energy-rich feeds like corn silage and protein sources like alfalfa hay may significantly increase milk output.

Supplementation with vitamins and minerals is also necessary. Calcium, phosphorus, and magnesium are essential for bone health and metabolism. Furthermore, supplements like probiotics and yeast culture help increase digestion and nutrient absorption, enhancing general health and milk production.

Preventive health care is another essential component of efficient dairy cow management. A strict vaccination and deworming regimen helps avoid common infections, keeping cattle healthy and productive. Regular health check-ups and collaboration with a veterinarian may help detect and manage any health problems before they worsen.

Finally, consideration for cow comfort cannot be stressed. Comfortable housing with appropriate room, ventilation, and clean bedding considerably lowers stress and injury, which are required to sustain high milk production levels. Finally, a well-designed nutrition and health management strategy is essential for maintaining a flourishing, productive dairy cow herd.

The Critical Calving Phase: Ensuring Optimal Health and Productivity 

Calving is a critical period in dairy cattle breeding, requiring great attention and care to ensure the health and production of the cow and the newborn calf. The calving process may be erratic, lasting from a few hours to a day, necessitating close supervision. The calving environment should be clean, peaceful, and stress-free to facilitate delivery and reduce difficulties. Immediate post-calving care includes ensuring that the calf starts feeding as soon as possible to acquire colostrum, which is high in essential antibodies for immunological function.

Monitoring continues after calving, emphasizing the mother’s recovery and the calf’s early development. The cow’s diet is critical; feed should be nutrient-dense to promote lactation and restore the cow’s energy stores. Regular veterinarian check-ups are essential for detecting postpartum concerns like infections or metabolic abnormalities early on, which might otherwise restrict milk supply. The calf’s development trajectory, dietary demands, and immunization schedule must all be carefully monitored to ensure its good health and ultimate integration into the herd.

Establishing a solid health monitoring program, including frequent evaluations and prompt treatments, is critical. This proactive strategy increases individual animal welfare and production while ensuring the dairy operation’s sustainability and profitability. Finally, meticulous care and management throughout the calving and post-calving phases create the groundwork for consistent milk production and long-term herd success.

Meticulous Record-Keeping and Comprehensive Data Analysis: Pillars of Successful Dairy Cattle Breeding 

Practical dairy cow breeding requires meticulous record-keeping and detailed data analysis. Maintaining accurate records of breeding, health, and milk production is more than just a bureaucratic exercise; it is the foundation for a data-driven approach to herd management and performance optimization. By recording breeding histories, health occurrences, and milk output trends, dairy producers may trace ancestry, monitor genetic features, and quickly detect emergent health concerns, establishing the framework for targeted treatments and improvements.

Analyzing this plethora of data enables farmers to make more educated breeding choices, choosing cattle with better genetic features and firm health profiles. For example, analyzing trends in milk production data might indicate which cows regularly generate high yields, guiding future breeding decisions to amplify these desired features among the herd. Similarly, health data may reveal predispositions to particular illnesses, enabling susceptible lines to be excluded while strengthening genetic resistance to prevalent health concerns.

Furthermore, predictive analytics based on previous data may forecast future patterns and results, allowing proactive management tactics. Farmers, for example, may improve the health and productivity of their cows by examining the relationship between feed consumption and milk output post-calving. Thus, data analysis converts raw information into actionable insights, resulting in immediate benefits and long-term viability in dairy cow breeding.

Common Challenges in Breeding Dairy Cattle: Infertility, Diseases, and Genetic Disorders 

Breeding dairy cattle presents three significant challenges: infertility, illnesses, and genetic problems. A variety of factors may contribute to infertility, including poor diet, stress, and ineffective breeding schedule management. Diseases, including mastitis and bovine respiratory illness, endanger herd production and lifespan. Furthermore, genetic diseases may cause various difficulties, ranging from reduced milk production to increased susceptibility to sickness.

Maximizing cow welfare by providing a stress-free environment and enough nourishment is critical to treat infertility. Implementing a strategic breeding strategy that includes frequent health checks and appropriate veterinarian treatments may address many of these concerns. Utilizing advances in genetic principles, such as selective breeding and high-quality sperm, may help increase conception rates.

Disease prevention needs a diverse strategy. It is critical to ensure that dairy cattle get thorough care, including regular immunizations and timely treatment for any diseases. Maintaining a clean and pleasant living environment also lowers the likelihood of illness spread. Proper ventilation, frequent cleaning, and appropriate room per cow are all critical components of an efficient disease prevention plan.

To treat genetic problems, producers should maintain detailed records and do data analysis on their cattle’s genetic history and health. This technique helps to identify at-risk people and make educated breeding choices. Farmers may improve their herd’s health and production by prioritizing superior genetics and using genetic testing to prevent disease transmission.

Finally, although infertility, illnesses, and genetic abnormalities provide significant problems in dairy cow breeding, they are not insurmountable. Dairy producers may achieve long-term success and sustainability in their breeding programs by using strategic planning, modern genetic techniques, and a focus on health management.

Embracing the Future: The Impact of Genomic Selection and Precision Farming on Dairy Cattle Breeding 

As we look forward, sophisticated technology and cutting-edge approaches will transform the future of dairy cow breeding. One of the most promising developments is genomic selection. This method uses DNA markers to detect and select animals with better genetic features at an early stage. Breeders may use extensive genomic data to generate more precise forecasts about an animal’s potential for milk production, health, and general performance, expediting genetic improvement and enhancing breeding program efficiency.

Another transformational development is the rise of precision farming. This technology-driven method employs a variety of instruments and procedures, including sensors, automated feeders, and health monitoring devices. Precision farming allows farmers to precisely monitor and manage individual animals, customizing feed, healthcare, and breeding procedures to each cow’s unique requirements. This degree of customized care improves animal well-being while increasing milk output and quality.

Integrating these technologies into dairy cow breeding programs may result in considerable increases in production. Genomic selection ensures that only animals with the most significant genetic merit are produced, lowering the risk of hereditary disorders and enhancing overall herd quality. On the other hand, precision farming improves the daily management of the herd by ensuring that each cow gets the best possible care and nourishment. These advances promise to propel the dairy sector to unparalleled efficiency, sustainability, and profitability.

The Bottom Line

Finally, raising dairy cattle requires a thorough awareness of specific breed characteristics, genetic concepts, and strategic selection techniques to ensure the herd’s long-term production and health. Maximizing milk production involves the use of critical breeding approaches along with appropriate health and nutrition management. A focus on the critical calving period guarantees cattle health and production. Furthermore, thorough record-keeping and data analysis are essential components of a successful breeding program, emphasizing the need for continual review and modification.

A proactive strategy aided by genomic selection and precision agricultural technology is critical for addressing common difficulties, such as infertility, illnesses, and genetic abnormalities. This not only reduces hazards but also improves breeding results. As profit margins in the dairy sector remain small, improving efficiency via attentive management practices and successful marketing tactics is critical.

Integrating these approaches and insights into your dairy farming business may boost production and profitability. A dedication to breeding quality and a willingness to adapt and develop lay the path for a resilient and vibrant dairy industry. Implement the advice and tactics provided to guarantee the success and sustainability of your dairy cow breeding efforts.

Key Takeaways:

  • Recognizing distinctive attributes of different dairy cattle breeds is fundamental to optimize milk production and herd health.
  • Implementing genetic principles and understanding heredity can significantly enhance breeding success.
  • Strategic selection of cattle ensures long-term productivity, focusing on both performance and health.
  • Balancing genetic control with practical breeding methods is essential for sustainable dairy farming.
  • Optimizing nutrition and health management is critical to maximize milk yield and ensure cow welfare.
  • The calving phase is a critical period that requires meticulous care to maintain optimal health and productivity of dairy cows.
  • Comprehensive record-keeping and data analysis are pillars of successful breeding programs.
  • Addressing common challenges such as infertility, diseases, and genetic disorders is vital for maintaining herd viability.
  • Embracing genomic selection and precision farming technologies can revolutionize dairy cattle breeding, improving both efficiency and outcomes.
  • Overall, a multi-faceted approach integrating traditional practices with modern advancements is key to successful dairy cattle breeding.

Summary:

Dairy farming relies on precise breeding procedures to increase milk output, herd health, and productivity. Understanding dairy cow breeds is crucial for establishing a successful enterprise, as genetic factors influence milk output, illness resistance, and general health. Modern genetic selection methods, such as genomic testing, selective breeding, and artificial insemination (AI), help dairy producers build a robust and prolific herd. Strategic selection is essential for maintaining long-term herd productivity and health, considering factors like milk production history, health records, physical qualities, and breeding methods. Essential breeding methods include natural breeding, AI, and embryo transfer. Nutrition and health management are crucial for maximum milk production, including high-quality forages, cereals, and nutrient-dense supplements. Preventive health care, including vaccinations, deworming, regular check-ups, and collaboration with veterinarians, is also essential. Cow comfort is also vital, as it lowers stress and injury required for high milk production levels.

Learn more:

Dairy Farm Devastated: Tornado Destroys Gajewski’s Life’s Work in Seconds

Discover how a tornado devastated Jeff Gajewski’s dairy farm in seconds, erasing 46 years of hard work. How does one rebuild after such a loss? Read more.

Jeff Gajewski spent his life building his dairy farm, but it was destroyed in a matter of seconds when a tornado ripped through the Marathon County farm on May 21. The National Weather Service confirmed that an EF1 tornado with maximum wind speeds of 90 mph traveled 3.57 miles, and the Gajewski dairy farm near Edgar was in its path. 

Before the storm, Gajewski milked 32 cows in the barn, which he rebuilt after purchasing the farm in the late 1970s. He had plans to sell the cows in a couple of months, and his sons had intended to use the buildings for their beef cattle. However, the tornado changed everything, taking a direct hit on Gajewski’s barn and two silos, causing severe emotional and physical destruction. 

Two cows were killed when the barn collapsed, and four additional cows had to be put down that night due to the severity of their injuries. The remaining cows were sent to Premier Livestock & Auctions LLC the following day, where they reportedly arrived in good condition. Fifteen young stock will stay on the farm until they can be sold as springing heifers. 

Due to the severe weather forecast, Gajewski himself evaded injury by starting chores early. This move likely saved his life. The weather reports had suggested that the brunt of the storm would stay south of Highway 29, leaving his farm ostensibly out of the path of the worst damage. Despite the uncertainty, Gajewski took precautions, ultimately witnessing the tornado’s full force wreaking havoc on his beloved farm. 

“It was getting dark out to the west, and then everything outside was flying — it felt like it dropped right on top of us.”

Family, friends, and neighbors quickly descended upon the farm to help save the cows and begin the daunting clean-up process. Gajewski was grateful for their support and recounted working until about 1:30 a.m. that first night. The following days have been long and physically taxing as he continues to pick up the pieces. 

As he considers the steps forward, Gajewski intends to fix up the lean-tos for the animal shelter during the summer months, utilizing parts of the barn’s roof that remained intact. Depending on costs, he aims to build a heated room where the milkhouse was to keep water running during the winter and housing for the youngstock approximately the width of the barn for winter. Despite the setbacks, his resilience shines through as he faces the rebuilding process with determination.

Key Takeaways:

The destruction of Jeff Gajewski’s dairy farm by a tornado serves as a stark reminder of nature’s unpredictability. Here are the key takeaways from this tragic event: 

  • An EF1 tornado with 90 mph winds hit Marathon County, devastating the Gajewski farm near Edgar.
  • Jeff had spent 46 years building his farm, only for it to be destroyed in mere seconds.
  • The barn and two silos were directly hit, resulting in the death of two cows and the euthanization of four more due to severe injuries.
  • Gajewski managed to avoid personal injury thanks to starting his chores early, taking heed of weather warnings.
  • Family, friends, and neighbors rallied to assist in rescuing the remaining livestock and beginning the cleanup process.
  • Despite the loss, Jeff’s resilience shines as he plans future rebuilding efforts, showcasing the importance of community support in times of crisis.
  • Gajewski aims to fix up lean-tos for summer shelter and build heated rooms to manage water during winter, displaying determination to continue.

Summary: Jeff Gajewski, a dairy farmer, lost his farm in a tornado on May 21. The EF1 tornado, with maximum wind speeds of 90 mph, traveled 3.57 miles and hit the farm near Edgar. Before the storm, Gajewski milked 32 cows in his barn, which he had rebuilt after purchasing the farm in the late 1970s. He had plans to sell the cows and use the buildings for their beef cattle. However, the tornado hit Gajewski’s barn and two silos, causing severe emotional and physical destruction. Two cows were killed and four additional were put down due to their injuries. The remaining cows were sent to Premier Livestock & Auctions LLC, where they arrived in good condition. Fifteen young stock will stay on the farm until they can be sold as springing heifers. Due to the severe weather forecast, Gajewski evaded injury by starting chores early, likely saving his life. Family, friends, and neighbors quickly descended upon the farm to help save the cows and begin the clean-up process. Gajewski is grateful for their support and worked until about 1:30 a.m. that first night. As he considers the steps forward, he plans to fix up the lean-tos for the animal shelter during the summer months and build a heated room for the milkhouse and housing for the youngstock. Despite the setbacks, his resilience shines through as he faces the rebuilding process with determination.

Best Practices for Achieving Longer Lived More Productive Dairy Cows

We all wish our cows could meet their potential and live 20 years or longer. However, until we discover the Bovine Fountain of Youth, this remains an elusive dream. Indeed, the average on most dairy farms is only six years. With so much potential, we need to focus on how we can help our cows live long, productive lives.

What Do WE Know About Longevity? Why Aren’t we Using What we Know?

When we develop illnesses, we don’t always have enough information to know what the root cause is.  This isn’t so in dairy farming. Mountains of data have been collected, analyzed and reported but, in general, dairy farmers are not acting up the information. We know what causes involuntary culling. We know what best practices could prevent it.  Unfortunately, the knowing and the implementing are still too far apart.

How Big is the Current Problem with Involuntary Culling?

According to Government of Canada and USDA reports, 30-40% of cows are being culled from herds each year.  Some of this is accounted for because of low production or sales of breeding stock. Those are conscious decisions made for specific reasons.  However, much of the culling is involuntary and is a huge contributor to decreased longevity. The majority of cows are culled because of reproductive problems, poor udder health, lameness and problems with feet and legs. Other illness or injuries also contribute to the high statistics. A culling rate of 40% means that a herd cannot raise enough heifers to meet replacement needs.

What Does this Mean?

High rates of involuntary culling are probably directly correlated to poor levels of animal welfare.  Unfortunately, these health/welfare problems may be indicators of something much more problematic.  The underlying health and welfare problems may be much higher than the rate of culling indicates.  Ito et al reported in 2010 that the actual prevalence of lameness among dairy cows is above 20%.  That percentage is considerably higher than the 2% that are reported as being culled because of feet and leg problems (Government of Canada, 2011). In 2008, 46% of cows in free stalls had hoof lesions (Cramer et al, 2008).  The numbers are similar in the USA.  USDA (2007) reports that four percent were culled for lameness, however an average of 20% to 55% of dairy cows are lame at any one time, depending on the region (Espejo et al, 2006, von Keyserlingk et al, 2013).

Mastitis Has the Same Pattern

In 2011, the Government of Canada reported that about 4% of cows are culled because of mastitis, high SSC or poor udder health. However, Rierkerink et al estimate that mastitis incidence is around 23 cases per 100 cow years.

Who Does A Good Job Of Achieving Longevity?

Best management practices, derived from proven science, are providing some breeders with improved animal welfare and increased profits.

Nevertheless, that doesn’t mean we can’t help our cows live long, productive lives.  We need to put what we know, into practice to extend their longevity.

Are you meeting these herd composition benchmarks?

  • 1st lactation                  24%
  • 2nd lactation                 20%
  • 3rd lactation                  16%
  • 4th lactation                  12%
  • 5th lactation and later   28%

Best Practices that Ensure Longevity

  1. Calf Management – Protocols to raise health and reduce calf mortality.
  2. Implement Indoor Housing Factors – To reduce lameness, injury, and illness.
  3. Benchmarking of farm performance.
  4. Implement an aggressive reproduction program.
  5. Reducing lameness.
  6. Build dairy producer knowledge.

Calf Management

It might seem unusual to start with calf management when you’re talking about extending the life expectancy of cows.  Many place involuntary culling of cows in the number one slot for how to improve longevity. That seems obvious. However, less obvious, but with perhaps even more impact are the calves that never make it to the milking line. Vasseur et al reported in 2012 that pre-weaning calf mortality rates are high in North America. Mortality rate record keeping, which needs to be dramatically improved and increased, is the first step.  Setting a realistic benchmark is also important.  Unfortunately, the Vasseur study also reported “some farms with mortality rates above 19% did not consider calf mortality to be a problem.”

  • Individual housing may not affect small groups but could reduce mortality among larger groups (more than 7-10 animals).
  • The effect of a calf’s illness on her ability to milk as a cow is, in general, underestimated. Recent research (Soberon et al, 2012) shows the effect of pre-weaning growth rates on later milk yields.
  • Failure to implement well-known and documented best practices is a major reason for the continuing high levels of calf mortality on many farms.

They also noted that in Canada there are significant differences in mortality rates between farms. The differences between the highest quartile of farms and the lowest is significant which is positive in so far as it indicates that, when good management practices are implemented, it is possible to dramatically reduce the problems.

The Role of Housing in Dairy Cattle Longevity

The characteristics of the environment that your cows are house in can have a significant impact on their longevity. Even when you have bred for the best possible feet and leg conformation, it can be compromised if the housing situation itself raises the risk of injuries. Some conclude that pasturing is the answer.  More thoughtful study and design needs to be applied to creating the ideal indoor environment for lactating cows.

One Canadian survey found that nearly 25% of Canadian dairy farms scored lameness results at less than 10%. This is lower than the results reported by some pasture-based dairies, proving that it is definitely possible to do make sustainable improvements.

Five improvements:

  1. Take responsibility: Zero grazing puts the responsibility upon the producer to create housing and provide management that does not negatively impact the dairy animals.
  2. Raise the rail height: Simply by increasing the height of the feed rail at the feed bunk to above 140cms from the floor can greatly reduce the risk of neck injuries. (Zaffino, 2012)
  3. Reduce standing time: Standing on wet, concrete floors has a direct correlation with lameness.
  4. Provide comfortable stalls: Depending on the situation, sand or mattresses have been shown to contribute to reduced instances of lameness.
  5. Sufficient Bedding: Switching to sand bedding requires significant change to buildings. Simply adding more straw or sawdust bedding results in hock lesions falling to 31% from the 80% prevalence that is seen when cows are housed on mattresses and no bedding.

Benchmarking of Farm Performance

More often than not, record keeping has a positive impact. Knowing the exact incidence of lameness, mastitis or other illness help set a target for reducing them. Well-managed dairies are reaping the financial benefits of reducing lameness and raising the welfare of their milking herd.  More training, data collection, and peer sharing is a pro-active and positive way to get the results heading in the right direction.

From Candid Camera to Can-Do Care!

Consciously and conscientiously targeting the reduction of involuntary culling is directly correlated to increased cattle longevity. Ensuring that all possible means – health, housing, and genetics – are being responsibly managed – will have a direct effect on reducing involuntary culling and mortality rates.

Reproduction Must Be Managed Better

Much is written about improving reproduction. At one time, the emphasis was solely placed on heat detection.  However, successful dairy managers are now paying particular attention to reproductive management from birth, through rearing, to transition and milking.  Definitely too many breeders are willing to accept less than the best reproductive performance. The first step is acknowledging that there are reproductive problems that aren’t being solved. This must be followed up by bringing in whatever help you can to build improvements into your repro program.

Lameness is Running Away with the Profits

We expect some degree of slowness, bent backs and hesitant steps in the aging and elderly folks we see around us.  However when our dairy herd is limping, falling down or unable to get up, we are forced, whether we like it or not to cull the animal – regardless of her age.  Lameness is a serious problem which adversely affects milk yield.  Research has shown that high yielding cows are more susceptible to lameness.  Too often, we accept this as one of the outcomes of an intensive focus over the past few decades on dairy production. Even though there are excellent best practices that can be used, too often this area is disregarded at the expense of the dairy operation and the welfare of the animal.

The Bullvine Bottom Line

It takes information to make improvements.  You can’t fix what you don’t acknowledge.  Dairy farmers are recognizing that they are responsible for improving their knowledge and understanding of the factors that impact longevity.  Sharing the statistics and setting benchmarks is next.  Most important, however, is implementing an action plan.

Only when improved record keeping and best practices are acted upon, will we begin to see our dairy herds reach their full lifetime potential.

 

Get original “Bullvine” content sent straight to your email inbox for free.

 

FACT VS. FANTASY: A Realistic Approach to Sire Selection

How often do you select a mating sire for the reasons you typically cull animals, as opposed to what your perceived ideal cow looks like?  Further to our discussion about what the Perfect Holstein Cow looks like we here at the Bullvine started to ask ourselves, “How often do we choose our matings based on what we think the perfect cow looks like? vs. what our true management needs are?” Far too often sire selection is based on the fantasy of breeding that next great show cow or VG-89-2YR instead of facts needed to breed that low maintenance cow that will stay in your herd for many lactations and produce high quantities of milk.  Do your sire selections overlook your management needs?

Speedy Selection. Long-Lasting Problems

Discernment is the hardest part of sire selection.  Seeing your herd for what it is and what its genetic needs are is step one.  Step two is choosing what will work for you almost three years from now when the daughters of the sires you use today will be entering the milking string.  The old adage was “breed for type and feed for production.”  But how many breeding stock animals have you sold recently based solely on conformation?  How many will you be selling in three years based on their type?  What are the revenue sources for your farm now and in the future?  If your answer is “We get our revenue from the milk cheque from as few cows as possible and with as much profit per cow as possible” then selecting for type could mean that your sire selection is out of alignment with your management needs.

How Can You Tell If You Are You Out of Sync?

One place to determine where your herd has issues is to look at the reasons for and the frequency of culling. Every cow that leaves your herd for any reason other than a profitable sale is an indicator of the issues that could be arising from sire selection that is out of alignment with what is going on in your herd.

The Bullvine found the following information on milking age females that are removed from herds:

  • Over 35% of cows in a herd are replaced annually. That is costly!
  • The top known reasons for culling or removing cows are:
    • Infertility  / reproduction                    23.1%
    • Sold for dairy purposes                       21.4%
    • Mastitis                                               13.8%
    • Feet and Legs                                        9.6%
    • Low production                                     7.6%
    • Total    75.5%
  • The other known reasons for culling or removing cows are:
    • Injury               10.0%
    • Sickness           7.0%
    • Old Age           2.4%
    • Diseases          1.8%
    • Bad Temperament      0.9%
    • Difficult Calving          0.9%
    • Conformation 0.9%
    • Slow Milker                 0.6%
    • Total    24.5%

Are You Breeding to Spend Money or Are you Breeding to Make Money?

You may be comfortable with your culling rate especially if it isn’t too far off “normal”. However when you look closely at the cows that remain in your herd how “needy” are they?  Staff time, vet calls, hoof trimming, semen, drugs, supplies, extra time in the dry cow pen and removing cows from herds before they reach maturity – these all add up to significant dollars down the drain.  Therefore, anything that can be done in sire selection to minimize these costs goes right to improving the financial bottom line.  All unbudgeted costs mean less profit. If an animal is culled early, it does not matter where she placed at the local show or that her sire was a popular bull that left fancy udders.  If he also left poor feet and low fertility, that costs you money.

A More Realistic Approach: Breed for the Bottom Line Not Just the Top Number

Often top bulls for total index are put forward to breeders for their use, without regard for the bull’s limiting factors.  The Bullvine doesn’t support that approach.  We recommendation that minimum sire selection values be set for the reasons cows are culled so that sires used in a herd don’t create new problems while the breeder tries to solve the current ones.

Here are the Bullvine we recommend the following requirements bulls should meet to be considered for use by bottom line focused breeders:

  • In Canada
    • Lifetime Profit Index   > +2000*
    • Daughter Fertility          > 100
    • Somatic Cell Score         < 2.90
    • Feet & Legs                      > +5
  • In USA
    • Total Performance Index        > 2000*
    • Daughter Pregnancy Rate          > 1.0
    • Somatic Cell Score                    < 2.90
    • Feet & Legs Composite               > 1.0

* A high minimum value has been set for both LPI and TPI to address the removal of cows for low production and so animals sold for dairy purposes can be in demand for their milk producing ability.

THE BULLVINE BOTTOM LINE

Every dairy breeder wants a superior herd and wants to eliminate the daily annoyances, costs and loss of valuable cows due to infertility, mastitis and feet problems and low production. Breeders should choose the best sires that correct the actual problems that they face in their herd instead of chasing a fantasy that has nothing to do with their reality.

The Dairy Breeders No BS Guide to Genomics

 

Not sure what all this hype about genomics is all about?

Want to learn what it is and what it means to your breeding program?

Download this free guide.

 

 

 

Send this to a friend