Archive for heat tolerance

Understanding the “Slick Gene”: A Game-Changer for Dairy Farmers

Uncover the transformative impact of the “slick gene” on dairy farming. What advantages does this genetic innovation offer both livestock and their caretakers? Delve into this groundbreaking discovery now.

Left: A SLICK coat vs right: a normal non-SLICK coat (Photo:LIC)

Imagine a day when your cows are more tolerant of heat and more productive—game-changing—for any dairy farmer battling climate change. Allow me to present the “slick gene,” a ground-breaking tool destined to revolutionize dairy output. This gene is found in tropical cow breeds and gives greater output even in hot temperatures and more thermal endurance.

Agricultural genetic developments have revolutionized farming by increasing crop and animal yield and stress resistance. Precision alteration of features made possible by CRISPR and gene editing technologies increases agrarian performance. The slick gene could be essential for producing cattle that thrive in higher temperatures, ensuring the dairy industry’s future.

Examining the “slick gene” helps one understand why agriculture has attracted such attention. Knowing its beginnings, biological processes, and uses on farms helps one better understand the direction of dairy farming. This path begins with investigating the function and significance of this gene.

The “Slick Gene”: A Revolutionary Genetic Anomaly

Because of its significant influence on cow physiology and output, the slick gene is a fantastic genetic abnormality that has fascinated geneticists and dairy producers. Shorter, sleeker hair from this gene mutation helps cattle deal better in hot and humid environments and increases their health and milk output.

Initially discovered in the early 1990s, this genetic variant was found in a paper published in the Proceedings of the 5th World Congress on Genetics Applied to Livestock Production (pages 341–343) after primary research by Lars-Erik Holm and associates in 1994. Their efforts prepared one to appreciate the unique qualities of the slick gene.

The slick gene consists of prolactin receptor (PRLR) mutations essential for breastfeeding and thermoregulation. These mutations provide a unique hair phenotype, which helps cattle better control heat, and they are beneficial over the typical genetic features of Bos taurus breeds.

The slick gene is a significant scientific development with practical uses that enhance bovine well-being and milk output, especially in hot environments. It is crucial in selective breeding projects aiming to improve production under demanding circumstances.

The Thermoregulatory Genius: How the “Slick Gene” Redefines Bovine Physiology

Because of their thinner coats, cattle with the “slick gene” have far improved heat dissipating capacity. This thinner covering helps them maintain a lower core body temperature even in great heat by improving ventilation and sweating, lowering heat stress. Furthermore, this adaptation enhances feed intake, milk output, and fertility. These physiological changes provide a whole boost, so slick gene cattle are vital for dairy producers in warmer areas and increase the profitability and sustainability of their enterprises.

Beyond Heat Tolerance: The “Slick Gene” as a Catalyst for Enhanced Dairy Production

Beyond its thermoregulating advantages, the “slick gene” has excellent potential for dairy producers. Agricultural genetics particularly interests milk production, which this genetic characteristic affects. By displaying gains in milk output, quality, and consistency, cattle with the “slick gene” typically help dairy farms to be more profitable.

Evidence indicates, as noted in the Proceedings of the 5th World Congress on Genetics Applied to Livestock Output, that slick-coated cows—especially in warmer climates—maintain constant milk output during heat waves, unlike their non-slick counterparts. Known to lower milk output, heat stress may cause significant financial losses for dairy producers; consequently, this stability is essential.

One clear example is Holstein cows produced with the slick gene. In 2010, Lars-Erik Holm’s World Congress on Genetics Applied to Livestock Production found that these cows produced 15% more milk at the highest temperatures. Furthermore, milk quality was constant with ideal fat and protein content, which emphasizes the gene’s capacity to improve production measures under environmental pressure.

Their performance in unfavorable weather underlines the practical advantages of slick gene carriers for dairy production in warmer climates. Reducing heat stress helps the slick gene provide a more consistent and efficient dairy business. Including the slick gene is a forward-looking, scientifically validated approach for farmers to maximize productivity and quality in the face of climate change.

Navigating the Complex Terrain of Integrating the “Slick Gene” into Dairy Herds 

Including the “slick gene” in dairy cows creates several difficulties. The most important is preserving genetic variety. If one emphasizes too much heat tolerance, other essential features may suffer, resulting in a genetic bottleneck. Herd health, resistance to environmental changes, and illness depend on a varied gene pool.

Ethics also come into play. For the “slick gene,” genetic modification raises questions about animal welfare and the naturalness of such treatments. Critics contend that prioritizing commercial objectives via selective breeding might jeopardize animal welfare. Advocates of ethical farming want a mixed strategy that honors animals while using technological advancement.

One further challenge is opposition from the agricultural community. Concerning long-term consequences and expenses, conventional farmers might be reluctant to introduce these genetically distinct cattle. Their resistance stems from worries about milk quality and constancy of output. Dealing with this resistance calls for good outreach and education stressing the “slick genes” advantages for sustainability and herd performance.

The Future of Dairy Farming: The Transformative Potential of the “Slick Gene” 

The “slick gene” in dairy farming presents game-changing opportunities to transform the sector. Deciphering the genetic and physiological mechanisms underlying this gene’s extraordinary heat tolerance is still a challenge that requires constant study. These investigations are not only for knowledge but also for including this quality in other breeds. Visioning genetically better dairy cattle, researchers are investigating synergies between the “slick gene” and other advantageous traits like increased milk output and disease resistance.

Rising world temperatures and the need for sustainable agriculture generate great acceptance possibilities for the “slick gene.” Hot area dairy producers will probably be early adopters, but the advantages go beyond just heat tolerance. By advancing breeding technology, “slick gene” variations catered to specific surroundings may proliferate. This may result in a more robust dairy sector that minimizes environmental effects and satisfies world dietary demands.

Integration of the “slick gene” might alter accepted methods in dairy production in the future. Improvements in gene-editing technologies like CRISpen will hasten its introduction into current herds, smoothing out the change and saving costs. This genetic development suggests a day when dairy cows will be more resilient, prolific, and climate-adaptive, preserving the business’s sustainability. Combining modern science with conventional agricultural principles, the “slick gene” is a lighthouse of invention that will help to define dairy production for the next generations.

The Bottom Line

Representing a breakthrough in bovine genetics, the “slick gene” gives dairy producers a fresh approach to a significant problem. This paper investigates the unique features of this gene and its strong influence on bovine thermoregulation—which improves dairy production efficiency under high-temperature conditions. Including the “slick gene” in dairy herds is not just a minor enhancement; it’s a radical revolution that will help farmers and their animals economically and practically.

The benefits are comprehensive and convincing, from higher milk output and greater fertility to less heat stress and better general animal health. The value of genetic discoveries like the “slick gene” cannot be over emphasized as the agriculture industry struggles with climate change. These developments combine sustainability with science to produce a more robust and efficient dairy sector.

All dairy farmers and other agricultural sector members depend on maintaining current with genetic advancements. Adopting this technology can boost environmentally friendly food production and keep your business competitive. The “slick gene” represents the transforming potential of agricultural genetic study. Let’s be vigilant and aggressive in implementing ideas that improve farm profitability and animal welfare.

Key Takeaways:

  • Heat Tolerance: Cattle with the “slick gene” exhibit superior thermoregulation, enabling them to withstand higher temperatures while maintaining productivity.
  • Enhanced Dairy Production: Improved heat tolerance leads to increased milk yield and quality, even in challenging climatic conditions.
  • Genetic Integration: Incorporating the “slick gene” into existing dairy herds poses both opportunities and complexities, requiring careful breeding strategies.
  • Future Prospects: The “slick gene” has the potential to revolutionize dairy farming practices, offering a sustainable solution to climate-related challenges.

Summary:

The “slick gene” is a genetic abnormality in tropical cow breeds that enhances productivity and thermal endurance. It consists of prolactin receptor (PRLR) mutations essential for breastfeeding and thermoregulation. The short, sleeker hair of the slick gene helps cattle cope better in hot and humid environments, increasing their health and milk output. The slick gene is crucial in selective breeding projects aiming to improve production under demanding circumstances. Its thinner coats improve heat dissipating capacity, allowing cattle to maintain a lower core body temperature even in great heat. This adaptation also enhances feed intake, milk output, and fertility, making slick gene cattle vital for dairy producers in warmer areas and increasing profitability and sustainability. Holstein cows produced with the slick gene produced 15% more milk at the highest temperatures and maintained constant milk quality with ideal fat and protein content. The future of dairy farming presents game-changing opportunities for the “slick gene,” as researchers are investigating synergies between the gene’s extraordinary heat tolerance and other advantageous traits like increased milk output and disease resistance.

Learn More:

Modern Dairy Cows Suffer More Heat Stress: How Genetics, Barn Design, and Nutrition Can Help

Discover how genetics, barn design, and nutrition can help modern dairy cows combat heat stress. Are your cows suffering in the summer heat? Learn effective solutions now.

Every summer, as temperatures rise, dairy farmers face a hidden crisis: heat stress in dairy cows. This silent issue leads to decreased milk production and suppressed fertility rates, resulting in significant economic losses and impacting the global dairy supply. What makes modern dairy cows less resilient to heat stress than before? 

The answer lies in selective breeding for higher milk yield, which has inadvertently reduced heat tolerance. Heat stress is not just about animal health and comfort; it has substantial financial repercussions, costing farmers millions annually. 

We aim to explore solutions to mitigate these effects through genetics, improved barn design, and nutritional strategies. 

Join us as we uncover innovative solutions that promise relief to cows and farmers.

Adapting to Modern Challenges: Genetic Selection and Heat Stress in Dairy Cows

As dairy farming has evolved, genetic selection for high milk production has made cows more vulnerable to heat stress. Heat tolerance, the ability of an organism to withstand high temperatures, is a critical factor in this. The increased metabolism needed for higher yields generates more internal heat, compromising their heat tolerance. This physiological challenge necessitates interventions to ensure cow wellbeing and productivity. 

Countries like Australia and Italy have recognized the importance of heat tolerance by implementing genetic evaluations. These assessments involve analyzing the genetic makeup of animals to identify those better suited to handle heat. For instance, Italian data shows that daughters of bulls rated 105 for heat tolerance produce about 1.5 kg more milk under heat stress than those sired by bulls rated 95, translating to an economic difference of $1 per day per cow. The impact is significant, with 180 days of high temperatures annually in Italy. 

Integrating genetic evaluations into breeding programs can significantly reduce the effects of heat stress. Selecting heat-tolerant animals improves animal welfare and boosts productivity. As climate variability increases, the focus on genetic selection for heat tolerance will continue to grow, ensuring sustainable and profitable dairy farming worldwide.

Impact of Heat Stress on Feed Intake and Milk Production in Dairy Cows 

Heat stress significantly impacts the feed intake and milk production of dairy cows. Under heat stress, cows reduce their feed intake by 8-12%, leading to a drop in milk output. When a cow’s core body temperature rises above 38.8⁰C, it stands longer to dissipate heat, reducing blood flow to the udder and decreasing milk production. Cooling the cow’s core body temperature with fans providing wind speeds of at least 7 km/h and evaporative cooling systems can help. These methods imitate sweating, cooling the cow, improving comfort, and boosting milk production.

Maximizing Airflow for Heat Stress Mitigation: Modern Barn Designs and Fan Technology 

Effective air movement is crucial for cooling dairy cows. Modern barns feature retractable side walls to enhance natural airflow and reduce heat stress. 

Natural ventilation might not suffice on still, humid days. Thus, fans are essential. Eric Bussem from Abbi-Aerotech BV recommends positioning fans to blow fresh outside air into the barn, which improves airflow and energy efficiency

Cross-ventilation ensures all cows get fresh air, preventing competition for more excellent spots. Advanced fan technology, like direct-drive models, further boosts energy efficiency and cuts maintenance costs. New fans from Abbi-Aerotech, for example, use only 15 W/h under standard conditions, much less than a typical light bulb. 

By using modern barn designs and advanced fan systems, dairy farmers can better manage heat stress, improving animal welfare and productivity.

Enhancing Cow Comfort and Productivity through Cross Ventilation in Barns

Cross ventilation in barns, achieved by placing fans to blow air across from the sides, offers significant benefits over traditional end-to-end systems. This setup shortens the air travel distance, providing constant fresh air throughout the barn. Directing airflow from the sides gives each stall the same cooling effect, reducing cow competition for the best-ventilated spots. This cross-ventilation system is critical in enhancing cow comfort, promoting better rest, and increasing milk production. 

Even cooling across the barn enhances cow comfort, promoting better rest and increased milk production. Equalized air distribution encourages cows to lie in their stalls, which is crucial for optimal milk synthesis. This system reduces stress and distributes the herd more evenly, improving overall welfare and productivity.

Overlooked Heat Stress: The Critical Impact on Dry Cows 

While lactating cows often get the most attention, the heat load on dry cows is a crucial yet frequently overlooked issue in managing heat stress in dairy herds. Dr. Geoffrey Dahl from the University of Florida has highlighted significant consequences of heat stress during the dry period, affecting subsequent lactation, overall health, and calf development. His research shows that cows experiencing heat stress during these six weeks produce about 2 liters less milk per day in their next lactation than cooled ones. Heat-stressed dry cows also have fewer alveoli in the udder, reducing milk production, and are more susceptible to retained placenta, mastitis, and respiratory diseases. 

The adverse effects extend to the offspring as well. Calves from heat-stressed mothers are born earlier, with lower birth weights and poorer survival rates. These issues persist through weaning and puberty, affecting growth rates and immune status. Reduced milk yields are also seen in these calves’ daughters, continuing the cycle of heat stress impacts into future generations. 

Comprehensive Heat Stress Management: A Responsibility for Dairy Farmers

Maintaining hydration is critical to managing heat stress in dairy cows. Easy access to clean water is essential, but effective hydration management goes beyond that. Comprehensive strategies are needed to cool cows from the inside out, supporting feed and water intake, replenishing nutrients, and promoting gut health during heat stress. 

Bovine BlueLite from TechMix is a leading product designed to maintain optimal hydration in dairy cattle. Available in soluble powder and pellet forms, it combines electrolytes with energy sources to preserve cell volume and fluid balance. Fortified with vitamins and antioxidants, BlueLite helps combat oxidative stress, reducing heat’s adverse effects on production and reproduction. 

Research shows that supplementing cows with Bovine BlueLite during heat stress helps decrease body temperatures and sustain milk production. Integrating BlueLite into a farm’s heat stress management can improve herd well-being and productivity during challenging summer months.

The Slick Gene: A Beacon of Hope for Heat Tolerance in Dairy Cows

Introducing the “slick” gene—known for its short hair coat and extra sweat glands—is a game-changer for boosting heat tolerance in dairy cows. This gene, from Bos Indicus or Zebu cattle, was integrated into Holsteins via the Senepol breed to enhance their productivity and adaptability in hot climates. 

Pioneering this effort, Raphy Lopez of Puerto Rico combined top US Holstein lines with Senepol cattle to develop high-producing, heat-tolerant cows. The University of Florida furthered this work by importing slick genetics, making notable bulls like Slick Gator and Slick Blanco available. 

A breakthrough came with the breeding of El-Remanso Sinba-Red. This homozygous slick bull ensures that all offspring carry the slick gene. Mark Yeazel’s homozygous slick red and polled bull, Ja-Bob Eclipse, has recently sparked renewed interest in slick breeding. 

Beyond the Americas, Rudolf Haudenschild and the KeepCool Syndicate in Switzerland actively promote slick genetics in Europe. These global efforts highlight the slick gene’s potential to help dairy cows stay productive and healthy despite rising temperatures worldwide.

The Bottom Line

Modern dairy cows face increasing vulnerability to heat stress due to selective breeding for higher milk production, which has inadvertently decreased their heat tolerance. Utilizing a holistic approach that includes genetic selection for heat tolerance, improved barn designs with better ventilation, and nutritional strategies to maintain hydration and reduce internal heat production can significantly mitigate these adverse effects. 

Global implementation of genetic evaluations and the slick gene integration show promise. Evidence from Italy and Australia demonstrates real-world benefits like increased milk production and better overall bovine health. Additionally, innovative barn designs, advanced fan technologies, and thorough hydration strategies offer practical solutions to this pervasive issue. 

It’s important to acknowledge the broader implications. Heat stress affects not only immediate productivity and health but also the long-term well-being of future generations, impacting calves and subsequent lactations. The economic losses are substantial, amounting to millions annually, highlighting the need for proactive measures. 

Addressing heat stress in dairy cows requires a comprehensive approach. By leveraging advancements in genetics, technology, and nutrition, the dairy industry can develop more resilient herds capable of thriving despite rising temperatures, thus ensuring sustained productivity and animal well-being.

Key Takeaways:

  • Genetic Selection: Modern dairy cows are less heat tolerant due to selective breeding for higher milk production.
  • Heat Mitigation Strategies: Housing with better temperature control, nutritional strategies to reduce internal heat, and incorporating the “slick” gene are crucial measures.
  • Air Movement: Effective ventilation through fans and open barn designs enhances cooling and cow comfort.
  • Dry Cow Consideration: Heat stress during the dry period significantly impacts future lactation yields and overall cow health.
  • Hydration: Rehydration is essential for maintaining feed intake and overall health during heat stress.

Summary:

Heat stress in dairy cows is a significant issue that leads to decreased milk production and suppressed fertility rates, causing economic losses and impacting the global dairy supply. Selective breeding for higher milk yield has reduced heat tolerance, necessitating interventions to ensure cow wellbeing and productivity. Countries like Australia and Italy have implemented genetic evaluations to reduce heat stress effects, improving animal welfare and productivity. Modern barn designs with retractable side walls and advanced fan systems can help dairy farmers manage heat stress, improving animal welfare and productivity. Cross-ventilation in barns shortens air travel distance, provides constant fresh air, and directs airflow from the sides, reducing competition for the best-ventilated spots. Heat stress affects lactation, overall health, and calf development, resulting in lower milk production and poorer offspring. Dairy farmers must manage heat stress comprehensively, including maintaining hydration, supporting feed and water intake, replenishing nutrients, and promoting gut health during heat stress.

Learn more:

Meet Viatine-19: The World’s Most Expensive Cow Worth $4 Million

Meet Viatine-19, the world’s priciest cow, valued at $4 million. Want to know why this Nelore beef cow from Brazil is so valuable? Keep reading to find out.

Selling for four million dollars, Viatine-19, a Nelore meat cow, has become historical in the energetic region of Minas Gerais, Brazil. This auction emphasizes the great importance of top-notch animals in the modern market.

An expert said, “Viatine-19 is not only a prized possession; she exemplifies genetic excellence in meat production.”

Among the beef breed globe, Viatine-19 stands out at 1100 kg (2420 lb). Guinness World Records confirms her record-setting price, which places her at the height of agricultural innovation and cattle breeding successes.

The Historic Significance and Modern Triumphs of the Nelore Breed

 A Legacy of Resilience and Adaptability: Originating in the Ongole cattle of India, the Nelore beef breed has intense physicality and flexibility. Originally imported to Brazil in the early 1800s, these precisely bred cattle were meant to flourish in Brazil’s challenging conditions. Renowned for their robustness, Nelore cattle can withstand tropical temperatures and fight infections and heat stress. Their unique characteristics—heat tolerance, disease resistance, and grazing adaptability—significantly improve their economic worth.

Particularly beneficial for meat production, the Nelore breed shows a remarkable development rate and excellent feed conversion efficiency. With relatively modest feed consumption, they may reach notable body bulk; their meat, known for its delicacy and taste, adds even more appeal to a worldwide market.

The breed’s success in Brazil is based on thorough genetic enhancements to maximize meat quality and production. Celebrating the greatest of Nelore genetics, annual events like ExpoZebu in Uberaba feature excellent specimens like Viatina-19, therefore highlighting the breed’s ideal. This continuous endeavor in improved cattle management and genetic purity strengthens Nelore’s great name.

The Distinctive Factors Elevating Viatina-19 to Unmatched Prestige 

Viatina-19 is unique in her unmatched genetic background, amazing physical features, and illustrious past. Her family reflects Brazil’s tradition in cattle breeding as famed Nelore breeds recognized for exceptional meat quality date back from. She has a remarkable muscular composition and is double the weight of a usual adult of her breed at 1,101 kg. Her honors highlight her distinctions, including Miss South America from the Champions of the World event. Her reproductive capacity promises to create new benchmarks in cow breeding, even if she intends to sell her egg cells abroad. Viatina-19 personifies bovine brilliance.

The $4 Million Sale of Viatina-19

 Catalyzing a New Era in the Beef Industry in Minas Gerais, BrazilSelling Viatina-19 for four million dollars significantly changes the cattle business. This deal emphasizes the increasing investment in premium cattle genetics, improving the Nelore breed’s value. Viatina-19’s genes, as a significant donor cow, will now affect ranchers and breeders worldwide, defining new benchmarks for meat output.

Economically, Viatina-19’s sales highlight the desire for beef breeds renowned for their meat quality and established new standards for cow pricing. This occasion also stimulated technological developments in animal genetics. Leading companies employing cloning and genetic manipulation to progress the sector include General Animal Genetics and Biotechnology.

Trade regulations among countries help Brazilian cattle genetics be more widely distributed. Leaders such as President Luiz Inacio Lula da Silva promote Brazilian beef globally, increasing economic possibilities through exports of superior cow egg cells. While this encourages international breeding projects, it raises questions about genetic diversity and the potential for spreading disease. However, overall, it strengthens the beef sector worldwide.

The sale of Viatina-19 marks a shift toward increased investment in genetics and breeding excellence, which will, therefore, influence market dynamics and raise industry standards worldwide rather than just a transaction.

Securing a Guinness World Record: A Mark of Unrivaled Distinction and Industry-Wide Impact 

Getting into Guinness World Records reflects an unmatched degree of quality. For Viatine-19, her acknowledgment as the most valuable cow in the world highlights her natural worth and the influence of her breed and ancestry. The standards for this recognition include exact documentation and validation of her selling price, unique qualities, and history. This thorough approach guarantees the record’s integrity through independent reviews by witnesses and industry experts. Guinness adjudicators closely investigated Viatine-19’s case, looking at her ancestry, significant weight, and unusual sale price. Reaching this distinction highlights the Nelore breed and agriculture industry breakthroughs in cow breeding, strengthening Viatine-19’s reputation.

Minas Gerais: The Agricultural Heartland and Cattle Breeding Powerhouse of Brazil 

Southeast Brazil’s Minas Gerais area stands out for its agricultural prowess and cattle ranching brilliance. It is a top center for beef cattle production because of its rich grounds and perfect grazing temperatures.

The province greatly influences the cattle business by hosting big farms supplying local and foreign markets. Its great importance in the worldwide beef industry is shown by its involvement in cattle contests.

Minas Gerais is committed to invention through sustainable farming and innovative genetic technology. This mix of history and modern technologies improves cow welfare and meat quality, fostering economic development in the beef sector.

The Bottom Line

The $4 million price tag of Viatina-19 emphasizes the changing dynamics of the beef sector, which is currently experiencing a shift towards increased investment in genetics and breeding excellence. This trend, exemplified by the sale of Viatina-19, highlights the value of the Nelore breed in Minas Gerais, Brazil. Emphasizing the breed’s importance, this record-breaking sale—documented by Guinness World Records—sets a new worldwide standard. Addressing environmental issues such as deforestation and methane emissions also clarifies difficulties, including keeping high-value animals and juggling economic viability for commercial producers. The sale of Viatina-19 highlights developments in genetics and breeding but also begs a review of beef sector profit policies and sustainability practices. This milestone might motivate ideas that combine environmental responsibility with financial success.

Key Takeaways:

  • Record-breaking sale: Viatine-19 was sold for an astonishing $4 million, marking the highest price ever recorded for a cow.
  • Breed excellence: As a Nelore beef breed, Viatine-19 exemplifies superior meat production qualities.
  • Significant weight: Weighing in at 1100 kg (2420 lb), she epitomizes robust and optimal cattle health.
  • Guinness World Record: Accredited by Guinness World Records, her sale is a hallmark of recognition and achievement.
  • Agricultural prowess: Housed in Minas Gerais, Viatine-19 represents the culmination of Brazilian excellence in cattle breeding.

Summary:

Viatine-19, a Nelore meat cow, was sold for four million dollars in Minas Gerais, Brazil, showcasing the importance of top-notch animals in the modern market and genetic excellence in meat production. Originating from the Ongole cattle of India, the Nelore breed has unique characteristics such as heat tolerance, disease resistance, and grazing adaptability, making them economically worth it. The sale of Viatina-19 will significantly change the cattle business, emphasizing the increasing investment in premium cattle genetics and improving the Nelore breed’s value. The sale will affect ranchers and breeders worldwide, defining new meat output benchmarks and setting new cow pricing standards. Trade regulations among countries encourage international breeding projects but raise questions about genetic diversity and disease spread. The sale of Viatina-19 marks a shift towards increased investment in genetics and breeding excellence, influencing market dynamics and raising industry standards worldwide.

Learn more:

Send this to a friend