Archive for genotyping

Crampy Dairy Cows – An Lactanet Project Update

Find out how Canadian dairy farmers can lower Crampy in cows. Get the latest data, genetic insights, and future strategies to boost herd health.

Summary: Crampy, also known as Bovine Spastic Syndrome, increasingly concerns Canadian dairy farmers due to its progressive neuromuscular symptoms. Lactanet’s data collection initiative aimed to provide a clearer picture of its prevalence and explore genomic evaluations for mitigation. Their analysis, involving 2,807 Crampy cases from 801 herds, revealed that genetic selection could significantly reduce its occurrence. With the heritability of Crampy estimated at 6.8%, prioritizing top-rated sires can lower the risk. Gabriella Condello’s M.Sc. thesis highlighted that Crampy primarily affects cattle between two and seven years old, with a higher incidence in younger age groups. The study emphasizes the need for ongoing data collection to refine genetic evaluations and develop effective control strategies.

  • Crampy affects Canadian dairy cows as a neuromuscular disorder, primarily in the hind limbs.
  • Lactanet’s data collection received 2,807 Crampy cases from 801 herds, aiding research.
  • Genomic evaluations suggest genetic selection can reduce Crampy prevalence.
  • Heritability of Crampy is estimated at 6.8%, indicating a genetic component.
  • Crampy affects cows mainly between two and seven years of age, with severe cases often seen in younger cattle.
  • Ongoing data collection and genotyping are crucial to improving genetic evaluations and mitigation strategies.
Canadian dairy producers, Crampy, degenerative neuromuscular illness, cattle, two to seven years old, difficult to diagnose, underlying cause, Paresis, younger animals, one hindlimb, individualized treatment options, Lactanet's data-collecting initiative, genetic screening methods, data matching, genetic research, Crampy control, Gabriella Condello's M.Sc. thesis, estimating occurrence of cramps, investigating genetics, varied ages, lower age groups, two to seven, genetic selection, combating Crampy, extensive data analysis, genetic component, minimize occurrence, nationwide genetic assessment system, data collecting, nationwide plan, monitor Crampy symptoms, nursing cows, genotyping, accuracy, future genomic assessment systems, nationwide data-gathering approach, lactating cows, milk recording, precision, genetic selection

Canadian dairy producers are growing concerned about crampy cows, often known as Bovine Spastic Syndrome. Imagine spending years nurturing a healthy herd only to have your cows suffer devastating neuromuscular disorders out of the blue. Wouldn’t it be frustrating to watch your carefully controlled herd’s health deteriorating? You’re not alone in feeling this way. Crampy doesn’t just afflict cows. It affects milk production, raises veterinary expenses, and may result in significant losses. Are you willing to let these obstacles eat your profitability and peace of mind? Let’s examine why this problem is growing more widespread and what you can do about it. The answers may surprise you and, more importantly, provide a path ahead.

Unpacking Crampy: What Dairy Farmers Need to Know 

So, what precisely is Crampy/Bovine Spastic Syndrome? It is a degenerative neuromuscular illness that mainly affects cattle between two and seven years old. The signs are pretty obvious: spastic spasms in the muscles of one or both hindlimbs, which spread to the back and finally the whole body. You may see your cattle shivering, straining against the neck rail as they rise, or exhibiting indications of lameness even though they can still walk with total weight.

Is it now being diagnosed as Crampy? This is when things become challenging. The course of symptoms might vary greatly, making it difficult to determine the underlying reason. This cannot be diagnosed quickly or early, complicating management and therapy options.

To complicate matters further, there’s Paresis, a similar disorder to Crampy. However, Paresis usually appears in younger animals and affects just one hindlimb. You’ll notice a “pegged leg” look rather than the trembling associated with Crampy.

Understanding these distinctions allows us to understand the broad picture when both illnesses impact herds with overlapping age groups. Crampy often affects older cattle, while Paresis affects younger ones. Both illnesses provide diagnostic hurdles and need individualized treatment options.

Lactanet’s Blitz: Farmers Rally to Combat Crampy with Data 

Lactanet’s data-collecting blitz was critical in combating Crampy. This program aimed to collect thorough information on the occurrence of Crampy and Paresis in Canadian dairy herds. The blitz ran from September 2021 to April 2022, providing a limited window for gathering critical information.

During this time, dairy producers nationwide reacted enthusiastically, reporting data on 2,807 Crampy instances and 219 Paresis cases from 801 dairy herds. This excellent engagement demonstrated the dairy community’s dedication to tackling this neuromuscular condition.

The efforts of dairy producers were significant. Their willingness to offer thorough information aided the first estimate of Crampy’s prevalence and paved the way for future genetic screening methods. These activities are critical in furthering our knowledge of Crampy and finding measures to limit its effect, eventually benefiting the health and production of dairy herds throughout the country.

Digging Deep: How Detailed Data Matching and Genetic Research Could Be the Game-Changer for Crampy Control

To determine the true incidence of Crampy in the Canadian dairy sector, Lactanet methodically linked acquired data from dairy herds to herdbook-registered herd mates. This means they checked each affected cow’s information against the official records of their farm colleagues. This was critical for accurately presenting the herd’s overall health state and ensuring that the study was valid.

This extensive data was then given to the University of Guelph for further analysis. Gabriella Condello’s M.Sc. thesis focused on estimating the occurrence of cramps on Canadian dairy farms and investigating their genetics.

First, the researchers reviewed the cases to see how common Crampy was across different herds. With this baseline established, the next step was to investigate the genetic data. The idea was to see whether specific genes rendered cows more prone to Crampy. The thesis attempted to examine the possibility of gene selection as a feasible strategy for reducing Crampy’s occurrence in herds.

Age Matters: Unveiling the Alarming Spike in Severe Crampy Cases Among Younger Cattle

According to current data collecting, Crampy affects cattle of varied ages, with a maximum age of 12 years. However, most instances occur in the lower age groups, particularly between the ages of two and seven. Many cases have been detected among these cattle, with younger animals showing a specific surge in severity. Specifically, 566 severe Crampy instances were observed at younger ages, emphasizing the need for early detection and management techniques in afflicted herds.

Genetic Selection: Your Key to Combating Crampy in Dairy Herds

Extensive data analysis revealed that Crampy’s genetic component has the potential to minimize its occurrence. We reduced the overlap between Crampy and Paresis instances by concentrating on cows aged three or older with neuromuscular disease indications. This filtering yielded 1,952 Holstein cows, giving a solid dataset for further analysis.

Crampy’s average within-herd prevalence rate was determined to be 4.7%. This value changes amongst herds, indicating the role of genetics and environmental influences. Crampy has a heritability of 6.8%, highlighting the role of genetic selection in alleviating the ailment.

An essential part of this research was determining the association between sire estimated breeding values (EBVs) and the occurrence of Crampy in their daughters. Daughters of low-rated sires were shown to be 3.2 times more likely to acquire Crampy than sons of high-rated fathers. This association indicates that choosing against sires with greater Crampy frequencies may dramatically lower its prevalence, demonstrating the importance of genetic assessment and selection in long-term genetic improvement.

Why Prioritizing Genetics Could Be Your Best Move Against Crampy 

The research presents numerous essential insights for the dairy business. First, Crampy’s average within-herd incidence rate is estimated at 4.7%, implying genetic and environmental factors. Crampy’s heritability was determined to be 6.8%, showing a high potential for genetic selection. Furthermore, daughters of low-rated sires are 3.2 times more likely to develop Crampy, emphasizing the need to focus on top-ranked sires to minimize prevalence rates.

These data indicate that targeting low-rated sires might benefit genetic improvement. Furthermore, the research discovered large genomic areas related to Crampy, demonstrating that numerous genes regulate it. This opens the path for genetic selection as a powerful tool to combat Crampy.

However, more data collecting is required before a nationwide genetic assessment system can be created. Implement a nationwide plan to monitor Crampy symptoms in nursing cows throughout time. Both afflicted and unaffected cows should be genotyped to improve the accuracy of future genomic assessment systems. To fully utilize the promise of genetic and genomic technologies in the fight against Crampy, the dairy sector must engage in a cost-effective, ongoing data-gathering effort.

The Bottom Line

As the dairy sector deals with Crampy, a planned, continuing nationwide data-gathering approach centered on lactating cows during milk recording is critical. Genotyping afflicted and unaffected cows will improve genomic assessments and the precision of genetic selection. The Canadian dairy sector must develop a cost-effective method for identifying Crampy cows over time, assuring sustainability and efficacy, resulting in healthier herds and more resilient dairy operations.

Learn more: 

Genomic Testing Transforms Profit Potential for the UK’s Dairy Herd: Key Insights from AHDB Analysis

Learn how genomic testing is improving the profitability of the UK’s dairy herds. Are you using genetic insights to enhance your farm’s profits? Find out more.

Imagine a future where the United Kingdom’s dairy farms keep pace with global competitors and lead in efficiency and profitability. This potential is swiftly becoming a reality thanks to advancements in genomic testing of dairy heifers. 

The latest analysis from the Agriculture and Horticulture Development Board (AHDB) underscores the significant financial benefits of genomic testing. It reveals a substantial gap in the Profitable Lifetime Index (£PLI) between herds engaging in genomic testing and those not. This article delves into the financial impact of genomic testing for the UK’s dairy herd, highlighting its potential to boost profitability and sustainability significantly. Improving genetics through genomic testing is a cost-effective and sustainable way to make long-term improvements to any herd. 

Genomic testing is revolutionizing dairy farming. It is a powerful tool for enhancing herd profitability and sustainability. We’ll examine the statistical evidence of PLI differences, theoretical and actual financial benefits, and the significant rise in genomic testing of dairy heifers. Additionally, we’ll address the issue of misidentified animals and the breeding implications. 

Genomic testing has dramatically shaped the industry since its introduction to UK producers. This transformative approach boosts farm profitability and ensures long-term sustainability. By leveraging genomic testing, dairy producers can make informed decisions that profoundly impact their operations and the broader agricultural economy.

Genomic Testing Revolutionizes Genetic Merit of UK Dairy Herds: AHDB Reveals Significant PLI Disparity with Profound Implications for Productivity and Profitability 

Genomic testing is revolutionizing the genetic merit of the UK’s dairy herd, significantly boosting productivity and profitability. The Agriculture and Horticulture Development Board (AHDB) reports a £193 gap in the average Profitable Lifetime Index (£PLI) between herds heavily engaged in genomic testing and those less involved. 

Producers testing 75-100% of their heifers have an average £PLI of £430 for their 2023 calves, compared to £237 for those testing 0-25%. This stark difference underscores the critical role genomic testing plays in improving the genetic quality of dairy cattle. It enhances health, longevity, and productivity, making it a powerful tool for herd management and breeding strategies. 

This £193 PLI difference translates to an estimated £19,300 profit potential for a 175-head herd. However, real-world accounts show the benefits can exceed £50,000. This underscores the significant financial rewards that genomic testing can bring, making it a vital tool for informed breeding decisions that drive long-term economic and genetic gains.

Potential Gains and Real-World Financial Impact of Comprehensive Genomic Testing in Dairy Herds

Genomic testing offers a compelling route to profitability for dairy producers. Herds genotyping 75-100% of their heifers achieve an average £430 PLI, while those testing only 0-25% lag at £237. 

This gap translates into significant gains. A 175-head herd could theoretically gain £19,300. However, real-world data suggests that the financial advantage can exceed £50,000, highlighting the profound impact of genomic testing on profitability.

Marco Winters Advocates Genomic Testing: A Cost-Effective and Sustainable Path to Long-Term Herd Improvement

Marco Winters, head of animal genetics for AHDB, underscores the cost-effectiveness and sustainability of improving herd genetics through comprehensive genomic testing. “Genetics is probably the cheapest and most sustainable way of making long-term improvements to any herd,” Winters notes. “And when it’s aimed at boosting profitability, the benefits directly impact a farm’s bottom line.” 

Winters highlights that significant returns outweigh the initial investment in genomic testing. A 175-head herd can see theoretical profit gains of £19,300, but actual accounts show this figure can exceed £50,000. 

Additionally, Winters emphasizes the sustainable nature of genomic testing. Enhancing herd health and productivity helps farmers avoid recurring costs associated with other improvement strategies, ensuring long-term viability and a competitive edge for UK dairy farms.

Precision Breeding Through Genomic Insights: Revolutionizing Herd Management and Breeding Strategies 

As genomic testing gains traction, its implications for herd management are profound. With 20% of the recorded herd currently undergoing tests, which is expected to rise, dairy farmers recognize the potential within their livestock’s DNA. This shift highlights the industry’s evolution towards data-driven decision-making in animal husbandry, with genomic insights becoming a cornerstone of successful herd management strategies. 

Genotyping not only clarifies lineage but also opens avenues for targeted genetic improvements. By identifying the exact genetic makeup of heifers, farmers can make informed decisions, enhancing traits such as milk production, health, and fertility. This precision breeding minimizes the risk of inbreeding. It ensures that the most viable and productive animals are chosen as replacements. 

The financial benefits of genomic testing are evident. Benchmarking herds using tools like the AHDB’s Herd Genetic Report allows farmers to understand the impact of their genetic strategies on profitability. The industry benefits from increased efficiency and productivity as the national herd shifts toward higher genetic merits. 

Genomic testing extends beyond Holstein Friesians to Channel Island breeds and Ayrshires, showing its broad applicability. This comprehensive approach to herd improvement underscores the AHDB’s commitment to leveraging cutting-edge biotechnologies to drive progress in dairy farming. 

In conclusion, genomic testing is reshaping dairy farming in the UK. By embracing these technologies, farmers enhance the genetic potential of their herds, securing a more profitable and sustainable future. Genomic insights will remain a cornerstone of successful herd management strategies as the industry evolves.

Harnessing the AHDB’s Herd Genetic Report: A Strategic Blueprint for Elevating Genetic Potential and Ensuring Herd Sustainability 

Farmers aiming to optimize their herd’s genetic potential should take full advantage of the AHDB’s Herd Genetic Report. This invaluable resource allows producers to benchmark their herd’s Profitable Lifetime Index (£PLI) against industry standards and peers. Farmers can gain critical insights into their herd’s genetic strengths and weaknesses, enabling more informed and strategic decisions regarding breeding and herd management. Accurately tracking and measuring genetic progress is essential for maintaining competitiveness and ensuring dairy operations’ long-term sustainability and profitability.

The Bottom Line

The transformative impact of genomic testing on the UK’s dairy herds is evident. Producers leveraging genotyping for heifers see remarkable gains in their Profitable Lifetime Index (£PLI), leading to significant financial rewards. This underscores the crucial role of genetic advancement, widening the gap between engaged and less engaged herds and inspiring a new era of progress in the industry. 

Accurate breeding records become essential with rising genomic testing across various breeds and corrections of misidentified animals. Integrating genomic insights into herd management allows producers with better genetic information to achieve superior outcomes. AHDB’s analysis reveals a shift from a sole focus on milk production to a balanced focus on health, management, and fertility, setting a new standard for future strategies and ensuring the reliability of genomic testing.

Every dairy producer should utilize tools like the AHDB’s Herd Genetic Report to benchmark and enhance their herd’s genetic potential. Embracing genomic testing is an investment in long-term success, revolutionizing herd management for profitability and sustainability in a competitive dairy market.

Key Takeaways:

  • Genomic testing significantly elevates the genetic merit of dairy herds, leading to more pronounced differences between the top-performing and bottom-performing herds.
  • Producers who genotyped 75-100% of their dairy heifers achieved an average Profitable Lifetime Index (£PLI) of £430, while those testing only 0-25% had a PLI of £237.
  • Improved genetics can translate to a theoretical value difference of approximately £19,300 for a typical 175-head herd, with actual margins showing an advantage exceeding £50,000.
  • The uptick in genomic testing is notable, with around 100,000 dairy heifer calves tested, representing 20% of the recorded herd, expected to rise to 35% by year’s end.
  • A significant number of animals have been misidentified, indicating potential inaccuracies in breeding strategies that could affect both quality and inbreeding rates.

Summary: 

The UK’s Agriculture and Horticulture Development Board (AHDB) has identified a significant gap in the Profitable Lifetime Index (PLI) between herds engaged in genomic testing and those not. This highlights the financial benefits of genomic testing for the UK’s dairy herd, which can significantly boost profitability and sustainability. Improving genetics through genomic testing is a cost-effective and sustainable way to make long-term improvements to any herd. The £193 PLI difference translates to an estimated £19,300 profit potential for a 175-head herd, but real-world accounts show the benefits can exceed £50,000. Precision breeding through genomic insights is revolutionizing herd management and breeding strategies, with 20% of the recorded herd currently undergoing tests. Genotyping not only clarifies lineage but also opens avenues for targeted genetic improvements, enhancing traits such as milk production, health, and fertility.

Learn more:

Send this to a friend