Archive for genomic studies

The Evolution of Dairy Cattle Breeding: From Famous Herds to Genomic Giants

Dive into the history of dairy cattle breeding. How have renowned herds influenced today’s genetics? Uncover their role in modern dairy operations.

Have you ever considered how dairy cow breeding has evolved over the years? It has been an enthralling voyage from the renowned arenas of famous registered herds to the current ‘Genomic Index Age, a pivotal era where genetic giants now rule supreme. In the first part of the twentieth century, renowned herds supported by investor money supplied bulls from high-yielding dams, making them a desirable asset to small dairy producers seeking genetic improvement. Fast forward to today, when genetic evaluations (G.E.) and DNA-based indexing have redefined what it means to have excellent breeding stock. The days of commanding high prices only based on the name of the herd are over. Today, it is all about the science behind genetics for over fifty heritable traits.

Pre-WWII: The Golden Age of Elite Dairy Herds

This was a pivotal period that laid the foundation for the modern dairy breeding industry during this pivotal period. Before World War II, widely recognized dairy herds dominated the dairy breeding business. A herd’s prefix often defines its popularity, not the animals’ genetic merit. Significant investor funds often supported these herds, allowing them to retain high-quality buildings, personnel, and resources. Consequently, they became the preferred supplier for smaller dairy producers looking for high-quality herd bulls.

While these herds were lauded for individual cow’s exceptional milk and butterfat outputs, it is essential to note that their success was not simply due to any genetic improvement. Rigorous management procedures and enhanced nutritional strategies were critical in setting high production records. As a result, these herds made a relatively small genetic contribution to the larger dairy farming community. Their true advantage resided in their operational competence, which smaller farms aspired to replicate by purchasing bulls from these well-known herds. 

Not all animals in these herds were evaluated for performance during this era, and animal marketing trumped genetic improvement. However, the number of purebred registered animals grew in the market share of all dairy cattle.

1945-1960: The Era of Aesthetic Excellence Over Performance 

Between 1945 and 1960, many well-known dairy farms strongly emphasized ‘type’ over productivity. In this context, ‘Type’ refers to the physical appearance of dairy cattle, including body parts, stature/size, and show appeal. The objective was to improve these physical qualities, which often led to cows from these herds receiving showring rewards for their remarkable conformation.

While the emphasis on type resulted in cosmetically improved cows, it did not translate into any significant genetic advancement in milk output. Small dairy producers who depended on bulls from these prominent herds may have produced more attractive cows, but milk yield progress was flat. The need for beauty trumped the necessity for improved functional and yield traits.

New standards were set for ideal type (pictures and models) and yield (M.E.’s and BCA’s) traits during this era. For herds on official milk recording, it was required that all cows in the herd be recorded – a very positive step for genetic comparison procedures and accuracy.  Animal genetic merit started to gain on animal marketing as the primary focus in owning purebreds. Milk producers increased their participation in breed and milk recording programs.

Mid-1960s to 1980: The Great Divide Between Type and Production 

The mid-1960s to 1980 marked a watershed moment in dairy cow breeding, as genetic evaluation information (G.E. became available, especially for productivity traits such as milk output and fat content.

The refusal by the previously dominant display herds to include G.E.’s in their breeding efforts had implications. Their steadfast commitment to type while ensuring animals looked great in the showring resulted in these herds losing significance in genetic progress. And they also lost influence with breed organizations.

Meanwhile, some farmer-breeders saw the promise of accurate young sire sampling programs and accurate genetic indexes and experienced significant increases in herd production. These progressive farmer-breeders’ herds outperformed their type-focused competitors because they utilized production genetic information extensively.

As the breeding business shifted to a more science-driven approach, the gap between show-type herds and those focused on production efficiency grew. Farmer-breeders began to see the importance of using daughter-proven A.I. sires with robust genetic indexes, leaving conventional display herds needing help to retain their prior leadership role. This transition from type to production efficiency marked a significant shift in the industry’s approach to breeding.

During this time, extensive industry-supported research into genetic evaluation procedures and breeding strategies revolutionized the dairy cattle breeding industry. Leadership in genetic improvement started to shift from breeds and prominent herds to artificial insemination organizations. Purebred registered herds on milk recording and type classification programs made moderate genetic progress during this period.

Post-1980: The Revolutionary Impact of Genetic Evaluations

Post-1980, the dairy industry witnessed a revolutionary impact of genetic evaluations. Dairy farmers saw significant advances in the genetic merit of their herds by using assessment tools, including milk recording, type classification, young sire sampling, and elite proven sires. These tools transformed dairy cattle breeding on a monumental scale, leading to profound changes and advancements in the industry, especially for yield traits and mammary systems.

With the advent of genetic research, an expansion in data for new heritable traits, and enhanced genomic evaluation procedures, the dairy cattle breeding industry entered a new era. By the 1990s, the accuracy of genetic assessments had significantly improved, and total merit indexing (TPI, NM$. LPI, JPI, …) became widely used. A.I. sire selectors began to rely heavily on data-driven criteria to find bulls with significant genetic potential. These developments significantly departed from the earlier twentieth-century emphasis on phenotypic features, including type and showring characteristics. The gap in cow productivity widened between show-type herds and production-oriented farms, highlighting the importance of these new tools in driving genetic progress.

The disparity in breeding practices became even more pronounced when farmer-breeders using (post-2008) genomic assessments for total animal merit outperformed those depending on the 1970s breeding philosophy of 50% type and 50% milk yield. This shift in the industry landscape was a wake-up call, as it demonstrated the competitive advantage of genetic indexes in predicting future production performance. The mold had been broken, and this new approach gave farmer-breeders a clear edge in production efficiency and total genetic quality.

Have you seen a change in your breeding practices?

Focusing on genetic indexes rather than pedigrees from well-known prefixes has dramatically changed the breeding business. Many of today’s top-performing herds were among the first to use genomic testing. In today’s competitive dairy breeding market, it is apparent that post-1980 innovations considerably changed dairy animal breeding techniques.

The Era of Genomic Giants: The Modern Landscape of Dairy Cattle Breeding 

Fast-forward to the present time. DNA indexes have become the starting point in animal selection decisions for breeders regardless of their trait priority: type, production, fertility, health, or functionality. For many traits, the age of genomic giants has firmly established itself. Seventy percent of dairy breed pregnancies are the result of using high total merit index genomic indexed bulls. This change demonstrates the decreased value farmer-breeders place on established superior daughter-proven sires 30-40 years ago. Acceptance and wide use of DNA information have replaced the questioning and skepticism of 2008 regarding genomic indexing. Breeding decisions today balance traits of most importance, as well as the accuracy of indexes and plans for future farm viability and sustainability.

The commercial paradigm for flourishing breeding herds has shifted dramatically. The days of high-income returns based only on a renowned prefix in a pedigree are over. Also, there is a selection for just one or two traits and long generation intervals. It is now all about high DNA-determined genetic merit for both males and females. Herd breeding strategies aim to produce high-indexing heifers. Dairy-sexed semen is increasingly utilized to control the size of the heifer herd, and there is a new revenue source from crossbred, half-beef calves. Lower-indexing cows and heifers are often implanted with elite embryos, guaranteeing maximum genetic improvement. The business of dairy cattle breeding is increasingly dynamic and financially based.

Lessons from Sheffield Farms: When Show Wins Don’t Translate to Genetic Legacy 

In May 1960, my family bought my grandfather’s dairy farm, a watershed point in our lives. At the same time, Sheffield Farms from St George Ontario, a well-known display herd, held their dispersal auction. Despite my developing interest in Holstein breeding, I did not attend the sale 50 miles away due to our pressing need to complete a new milk house. Sheffield Farms, known for its multiple show victories, sold cows for an average of CA$3,152 (equivalent to CA$33,506 in 2024) and one for an astonishing $22,000. At the time, the typical milk cow sold for just $325.

Twenty years later, curiosity prompted me to investigate the progeny of Sheffield Farms’ show-winning herd. To my astonishment, none of the top sellers at that auction had significantly affected the Canadian Holstein breed. The sole exception was a heifer calf sold for $4,500, which produced several show-winning daughters before fading into oblivion.

This analysis was eye-opening. It proved that the perceived value of a well-known display herd only sometimes converts into long-term genetic influence. What was genuinely important was not the herd’s show success but the herdsman’s skill to offer animals for competition. This insight highlighted a fundamental point – genetic examinations are significantly more critical than showring awards when planning for long-term genetic advancement.

The Sheffield Farms’ Sale significantly impacted my views. As the dairy cattle industry entered the age of comprehensive genetic studies, it became evident that young bulls with high-performance indexes had a much more significant influence on the breed than older, established bulls bred for show success.

Have prominent registered Holstein herds made a meaningful contribution to genetic improvement? This issue is worth considering, particularly recent advances in dairy cow breeding. Historically, renowned herds enjoyed status, were shown in glossy ads, won contests, and sold for high prices. However, their contribution to genetic improvement becomes less evident as we look deeper. Genetic evaluations (G.E.) and genomic testing have transformed the sector in recent decades. Young bulls with high-performance trait indexes have significantly influenced genetic progress and will result in enhanced milk output, improved efficiencies, increased overall herd health, improved female reproduction, and improved functionality of animals. While traditionally bred registered herds still exist, their leadership role has been replaced by high-merit genomic bulls, now the trend leaders.

Comparative Analysis: Canada, USA, and the World 

In Canada today, the method of breeding dairy cows has heavily embraced genomic studies, with most breed advancements based on DNA indexes. Canadian breeders have swiftly embraced high LPI genomic bulls, resulting in a contemporary marketplace dominated by performance-based selection measures. This forward-thinking mindset guarantees that the genetic merit in Canadian herds continues to flourish, with a growing split from once famous show-type herds.

Across the border in the United States, the scenario is quite similar, with minor regional variances. American dairy producers depend heavily on genetics, with many solely favoring productivity attributes. The presence of proven cow families and high-performance genomic sires in marketing reflects a delicate balance of history and modernity. Nonetheless, using modern genetic data is critical for making considerable genetic advancements. Individual breeders have a significant impact, especially those who can capitalize on high-index progeny and cutting-edge genetic research. Breeding herds often have groups of females with high genetic merit for milk solids yield, ideal breed type, or animal functionality to serve the industry’s evolving goals.

Looking at the worldwide scene, the trend toward genetic-based selection is consistent, while the amount of acceptance differs. Countries like Denmark and the Netherlands have pioneered genomics, quickly incorporating it into breeding efforts. This shift has yielded herds with excellent genetic value and impressive performance measures. In contrast, despite increased interest in genomics due to its promising results, conventional breeding procedures continue to be used in some regions worldwide.

So, how does this impact your personal breeding decisions? The evident message is the importance of genomic assessments and the high total genetic merit genomic bulls are rapidly advancing genetic improvement. If your breeding program continues to emphasize single or two-trait-focused selection, you should reconsider your approach. Consider how incorporating genomic information can improve your herd’s output, health, and overall performance. By matching your strategy with global trends, you can keep your herd competitive and profitable in a constantly changing dairy cattle breeding business. Setting your breeding goals is paramount to your dairy enterprise’s future.

The Bottom Line

The evolution of dairy cow breeding has moved to the tools of herd performance recording, data analysis, benchmarking, genetic research, identification of top females, and extensive use of elite genomic sires from the prior dominance of renowned registered herds. Historical patterns reveal that, although show-winning herds historically dominated, their genetic contributions fell short of their aesthetic attractiveness.

Genetic progress has always depended on progressive breeders capturing increasing data and providing it for industry analysis and use.

With the introduction of genomic assessments and the rising precision of genomic data, dairy producers today have unrivaled tools for driving genetic innovation and improving profit. As DNA indexing grows, breeders will make improved breeding decisions, resulting in calves with higher genetic values. However, this is about more than just cutting-edge technology. It is about incorporating these improvements into practical breeding tactics.

So, where are we going from here? Every dairy farmer and breeder must carefully evaluate their breeding practices. Are you using the most recent genetic data? Do you prioritize traits that will sustain your herd in the long term? The answers to these issues will influence individual enterprises’ success and the future of dairy farming.

As the industry continues to evolve, one thing is sure – a combination of careful research and practical breeding will drive the next age of dairy cow greatness. Preserving profit-focused traditions and embracing developments that provide actual, long-term advantages is essential. Dairy cow breeding’s future depends on all dairy industry stakeholders’ capacity to adapt, develop, and strive for genetic perfection.

Key Takeaways:

  • Pre-WWII, elite herds dominated with investor-backed ventures that set the standard for breeding quality.
  • In the mid-20th century, aesthetics often precede genetic productivity in herd priorities.
  • The advancement of genetic evaluations (GEs) marked a turning point, particularly from the mid-1960s to 1980.
  • Post-1980, the focus shifted decisively towards production enhancement using sophisticated GE methodologies.
  • Today’s breeding practices are dominated by genomic giants, with 70% of pregnancies resulting from high TMI genomic bulls.
  • “Famous” herds now rely less on legacy and more on proven performance metrics and DNA indexes.
  • The story of Sheffield Farms illustrates how historical show successes may not ensure lasting genetic impact.
  • The comparative landscape of dairy cattle breeding reflects differing influences between geography and breeder philosophy.

Summary:

This article tracks the transformation of Dairy cattle breeding from the pre-WWII era to contemporary practices, highlighting the changing influence of famous registered herds. Initially, elite herds were valued for breeding stock provision, yet post-WWII, they prioritized aesthetic traits at the expense of production improvements. As genetic insights solidified by the 1980s, the prominence of show herds waned, paving the way for genomic evaluations that reshaped modern breeding strategies. Presently, high-index genomic bulls surpass the historical impact of these herds. The article critiques the actual genetic influence of these renowned herds, drawing comparisons between practices in Canada, the USA, and globally. Examples like Sheffield Farms demonstrate that achieving show success does not necessarily correlate with long-term genetic legacy, critically examining past and present breeding paradigms.

Learn more:

Join the Revolution!

Bullvine Daily is your essential e-zine for staying ahead in the dairy industry. With over 30,000 subscribers, we bring you the week’s top news, helping you manage tasks efficiently. Stay informed about milk production, tech adoption, and more, so you can concentrate on your dairy operations. 

NewsSubscribe
First
Last
Consent
Send this to a friend