Archive for fertilizers

How Dairy Farms in the US Cut Greenhouse Gases by 42% in 50 Years

See how US dairy farms have changed in 50 years. Want to know more? Read the full story.

Have you ever wondered how your morning milk became more environmentally friendly? Over the last 50 years, dairy farms in the United States have seen a dramatic change, increasing milk production efficiency while considerably reducing environmental impact. These changes are more than simply numbers on paper; they impact our everyday lives, health, and common environment.

Join us as we look at this beautiful path of advancement and invention. Discover how technological improvements, crop yields, and farm management have revolutionized the dairy farming industry. This isn’t simply about cows making more milk.  It’s about a holistic improvement in: 

  • Greenhouse gas emissions reduction
  • Improved fossil energy efficiency
  • Smarter water usage

“The national average intensity of GHG emissions decreased by 42%, demonstrating a 14% increase in the total GHG emissions of all dairy farms over the 50 years.”

The implications of these developments are enormous. Reduced environmental effects lead to a healthier earth, while enhanced production efficiency guarantees that dairy products remain a mainstay in our meals. As consumers, being aware of these improvements enables us to make better decisions and appreciate the intricate processes that deliver food to our meals.

Environmental Metric19712020% Change
GHG Emissions (kg CO2e/kg FPCM)1.700.99-42%
Fossil Energy Use (MJ/kg FPCM)5.772.67-54%
Water Use (kg/kg FPCM)33.524.1-28%
Ammonia Emissions (g/kg FPCM)11.67.59-35%
Nitrogen Leaching (g/kg FPCM)5.231.61-69%
Phosphorus Runoff (mg/kg FPCM)176.2118.3-33%

Guess What? We Now Need 30% Fewer Cows but Produce Twice the Milk! 

Did you know that we now require around 30% fewer cows to produce almost twice as much milk as we did fifty years ago? That’s correct; despite having fewer cows, milk output has increased dramatically, owing to advances in agricultural methods and technology.

Here’s a brief breakdown: 

  • 1971: Larger herds with lower production efficiency needed more cows.
  • 2020: With better genetics, nutrition, and farm management, fewer cows produce more milk.

What does this mean for the environment? The math is simple and impactful: 

  • 42% decrease in greenhouse gas (GHG) emission intensity per unit of milk produced.
  • 54% decrease in fossil energy use intensity.
  • 28% reduction in water intensity for milk production.

This is more than simply producing more milk; it is also about making it more environmentally friendly and sustainable. The advantages extend beyond the farm, impacting everything from energy use to water conservation. Dairy farms reduce their environmental impact significantly by increasing efficiency.

Isn’t it a marvel? The dairy business has shown that with innovation and effort, fewer resources may lead to increased production and environmental advantages. It’s a narrative of growth that offers hope for a sustainable future.

Watch Out! The New Tech Revolution Turning Dairy Farms Green

Consider how smarter, more efficient agricultural equipment may alter the dairy sector. Tractors have evolved into lean, mean machines capable of producing milk. Today’s tractors are significantly more fuel-efficient than those of the past. They lowered fossil fuel use by 54% using less diesel [USDA NASS, 2023b].

But it’s not just the tractors. The energy that runs dairy farms has likewise undergone a green revolution. The push for renewable energy has made it cleaner and more efficient, resulting in lower greenhouse gas emissions from power consumption [Rotz et al., 2021]. This environmentally friendly makeover includes fertilizer. More effective fertilizers need less of them to provide higher crop yields, minimize nutrient runoff, and reduce fossil fuel use [Kleinman et al., 2019].

All of these developments add up. Each technological advancement increases dairy farming productivity while also being more environmentally friendly.

The Surprising Shift: Why the West is Now the Dairy Capital 

So, why is there so much talk regarding regional shifts? Let’s get into it. Dairy farming in the United States has increasingly transitioned from the East to the West over the last 50 years. This relocation has substantially impacted environmental indicators in addition to geography. Take cow numbers as an illustration. In the East, numbers have dropped by almost 49%. Contrast this with the West, where cow numbers have more than doubled.

So, what does this transition signify for the environment? For starters, the West’s greenhouse gas (GHG) emissions have surged as the number of cows has grown. GHG emissions are projected to triple in places such as the Northwest and Southwest. This surge cancels out the East’s lower emissions, resulting in a moderate national increase of 14% in overall GHG emissions.

Then there’s water consumption. Western farms depend heavily on irrigated crops to feed their cattle, causing water demand in locations such as the Southwest to skyrocket—576 kg/kg FPCM. The national total water usage has increased by 42%, posing a significant challenge considering the West’s periodic water shortages and droughts.

However, it is not all doom and gloom. There have been some beneficial developments. For example, although ammonia emissions increased by 29% overall, fertilizer runoff losses such as nitrogen and phosphorus have reduced due to improved agricultural techniques.

The east-to-west movement has had a mixed effect—improved efficiency on the one hand but increased resource usage and emissions on the other. The goal is to reduce these heightened consequences while maintaining efficiency improvements.

You Won’t Believe How Efficient Dairy Farms Have Become! 

Did you know that during the last 50 years, greenhouse gas (GHG) emissions per unit of milk produced in the United States have fallen by 42%? This significant drop is primarily the result of improvements in milk production efficiency and novel dairy farm operations. For example, contemporary technology has helped dairy farms become more efficient, enabling them to produce the same quantity of milk while using fewer resources and producing less waste.

You may wonder how this considerable reduction in GHG emission intensity translates into just a 14% increase in overall GHG emissions, particularly considering the huge increase in milk output. The solution is efficiency. In 1971, dairy farms required more cows and energy to produce the same quantity of milk. Today, technological breakthroughs, such as improved feed quality and management procedures, have enabled farms to grow almost twice as much milk with 30% fewer cows.

While total milk production has almost doubled, increased efficiency means that each gallon produces much less emissions. For example, agricultural methods today include improved manure management, which decreases methane emissions, and precision feeding, which optimizes cow diets to minimize GHG emissions (https://www.epa.gov/ghgemissions). Adopting renewable energy sources like anaerobic digesters reduces GHG emissions by converting waste into electricity  (https://www.ers.usda.gov/publications/pub-details/?pubid=90538).

So, while generating much more milk, the overall increase in GHG emissions is relatively minor. This balance demonstrates the impressive efficiency improvements of current dairy production operations. Not only does this improvement assist the environment, but it also illustrates how technology breakthroughs may generate considerable environmental change. Isn’t it something to think the next time you have a glass of milk?

Here’s Something to Chew On: US Dairy Farms Have Made Remarkable Strides in Reducing Their Reliance on Fossil Energy 

The figures reveal an eye-opening narrative of a 54% decline in fossil energy intensity over the last 50 years. This implies that the energy needed per unit of milk produced has been reduced by more than half! Furthermore, the overall amount of fossil energy used across all farms has fallen by 9%.

How did we achieve this big efficiency boost? Technological developments and improved resource management play prominent roles. For starters, the transition to more efficient gear has been game-changing. Modern tractors and equipment use far less fuel per acre than their antique predecessors. Adopting diesel engines instead of gasoline engines has also been a significant advancement. Naranjo et al. (2020) found comparable results for California dairy farms, indicating a general trend.

However, it is not just about improved engines. The transition to renewable energy sources, such as employing anaerobic digesters to produce power from cow dung, contributes to a decrease in fossil energy use. These digesters not only reduce fossil fuel usage but also aid in reducing greenhouse gas emissions.

On the farm management front, resource efficiency has gained precedence. Farmers are increasingly using technologies such as precision agriculture, which enables them to apply the exact quantity of inputs such as water and fertilizer, reducing waste and increasing efficiency.

These developments are not just flashes in the pan but significant milestones toward sustainable dairy production. And although we’ve made tremendous progress, the road is far from done. The dairy industry’s continuing commitment to innovation and development will guarantee that it stays responsible for our natural resources.

Brace for Impact: Western Dairy Farms’ Water Use is Skyrocketing Despite Efficiency Gains 

While we’ve made significant progress in lowering water consumption intensity per unit of milk produced by 28%, the tale doesn’t stop there. The transfer of milk production to the drier western areas has resulted in a 42% rise in total blue water use. This implies that, while utilizing water more effectively, the sheer quantity of dairy farms in arid places has increased total water use.

So why is this such a huge deal? Water is a valuable and often limited resource, particularly in the West. Increasing irrigation water demand confronts the combined danger of rising temperatures and decreasing water resources. As climatic conditions worsen, it is apparent that water usage efficiency will no longer be a luxury; it will be required for the long-term viability of US dairy farms.

Innovative technology and improved water management methods may assist in addressing this problem. Advanced irrigation systems, drought-resistant crops, and even the capture and reuse of water in dairy operations must become routine practices. This proactive strategy guarantees that dairy farming grows while still being environmentally friendly.

The Nutrient Puzzle: Why Are Some Emissions Up While Others Are Down? 

Let’s examine nutritional losses—they’re a bit like a double-edged sword. Have you ever wondered why some emissions rise while others fall? It’s rather fascinating.

Consider ammonia emissions, for example. They increased by a stunning 29%. You could be wondering, “Why?” As it turns out, more cows are kept in open areas, and long-term manure storage is used more often. These technologies are known for emitting substantial ammonia into the atmosphere [Rotz, 2014]. This has been a tricky issue since, as our technologies progressed, they unintentionally resulted in more ammonia floating about.

On the other hand, nitrogen leaching has decreased by 39%, which is a good surprise. How did this happen? The key is effective nutrition management. Farms avoid excess nitrogen from leaching into groundwater by improving manure nitrogen use and reducing inorganic fertilizer usage. Using cover crops and less tillage reduces leaching (Castaño-Sánchez, 2022). As ammonia emissions increased, nitrogen levels that may contaminate water sources were reduced.

Continuing with uneven outcomes, let’s talk about the runoff losses. Here’s a positive statistic: nitrogen and phosphorus runoff losses have decreased by 27% to 51%. That is big! Fewer tillage operations and cover crops have lowered nutrient and sediment runoff [Veltman, 2021]. When manure is absorbed into the soil more quickly and with some subsurface injection, less phosphorus ends up in runoff, especially sediment-bound phosphorus.

So there you have it. The landscape of nutrient outputs and losses is complicated, requiring a continual balancing act. Nonetheless, these advancements indicate that we are moving on the right path, even if specific indicators lag.

The Hidden Cost of Efficiency: Rising Methane and VOC Emissions

A disadvantage of higher milk production efficiency is increased methane (CH4) and volatile organic compounds (VOCs). Over the last 50 years, methane emissions from dairy farms have increased by 32%, while reactive non-methane VOCs have increased by 53%. These data should catch your attention, particularly given the rapid expansion of dairy farms in the western areas.

So, what’s behind these increases? It comes down to two key factors: 

  • More Cows, More Emissions: Western dairy farms have expanded significantly despite a national decline in cow numbers. More cows produce more methane, primarily via enteric fermentation and waste management. The construction of long-term manure storage facilities, such as lagoons and piles, increases methane emissions.
  • Increased Surface Area for VOCs: Changes in how farmers store feed and waste add to VOC emissions. Large, open silage bunkers and piles enable more organic material to react with oxygen, producing and releasing volatile organic compounds.

The environmental implications are worrying: 

  • Climate Change: Methane is a potent greenhouse gas, with a global warming potential 28 times larger than CO2 [EPA]. The rise in methane levels is a setback in the battle against climate change.
  • Air Quality: VOCs lead to the formation of ground-level ozone and smog, which degrades air quality and presents health hazards.

These growing emissions underscore the need for new methods and technology to manage manure and silage on dairy farms effectively. To address these expanding problems, environmental stewardship must stay up with industrial improvements.

Still Skeptical About the Incredible Advancements in Dairy Farming? Here’s What the Experts Are Saying! 

Still dubious about the remarkable advances in dairy farming? Let’s look at what the experts are saying.

Capper et al. found that improved feed efficiency and animal management practices had considerably increased milk yield per cow. According to [Capper et al., 2009](https://doi.org/10.3168/jds.2009-2079), the average milk supply per cow has increased by 2.4 times in the last 50 years, leading to significant environmental advantages.

The USDA National Agricultural Statistics Service (NASS) backs up these allegations. Their statistics demonstrate a staggering 42% reduction in greenhouse gas emission intensity across US dairy farms, attributable to advances in feed efficiency and other sustainable practices ([USDA NASS, 2023a](https://www.nass.usda.gov/).

Rotz et al. discuss technical improvements, emphasizing the function of precision agricultural instruments and anaerobic digesters in lowering fossil energy use. According to their complete study, “The shift to more efficient farm machinery and renewable energy sources has cut fossil energy use by over 50% per unit of milk produced ” ([Rotz et al., 2021](https://doi.org/10.3168/jds.2020-19793)).

However, not everything is bright, as Hospers et al. point out in their analysis of Dutch dairy farms. They point out that although Western US farmers have made tremendous progress, overall output growth has resulted in increased water demand. “Efficient irrigation technologies have not kept up with the rapid expansion of dairy operations in arid regions,” their report says (Hospers et al., 2022).

Even environmentalists are chiming in. Hristov et al. note that ammonia emissions remain a major problem. “Despite significant gains in reducing other pollutants, ammonia from manure storage and management still poses environmental challenges,” they warn (Hristov et al., 2018).

These credentials support the assertions and highlight the continuing problems and opportunities for future progress in US dairy production. Whether it’s a rise in milk output or the introduction of ground-breaking technology, the sector is transforming, and the evidence speaks for itself.

The Bottom Line

The dairy business in the United States has made fantastic improvements during the last 50 years. We’ve made significant progress in lowering the number of cows required, improving milk production efficiency, and minimizing environmental consequences such as greenhouse gas emissions and energy consumption. However, these accomplishments are fraught with difficulties, particularly in countries such as the West, where water use has surged. Improved efficiency is excellent, but it is evident that continuous innovation and new methods are required to sustain this pace.

The dilemma remains: How can we continue to enjoy dairy products while safeguarding the environment? It’s not only about reflecting on our achievements but also about anticipating what might be accomplished. Can we make additional efforts to capture renewable energy on farms, enhance waste management systems, or adopt more water-efficient agricultural practices? Sustainable dairy production in the future depends on our willingness to accept and spread these creative ideas.

Key Takeaways:

  • Dairy farms in the US now use 30% fewer cows but produce twice as much milk compared to 50 years ago.
  • Technological advancements have significantly increased crop yields, fuel efficiency, and resource efficiency on farms.
  • Greenhouse gas (GHG) emission intensity per unit of milk decreased by 42%, even though total GHG emissions slightly increased by 14%.
  • Fossil energy use per unit of milk dropped by 54%, with a national total reduction of 9% in fossil energy use over 50 years.
  • Water intensity for milk production decreased by 28%, but total blue water use rose by 42% due to more dairy farms in arid western regions.
  • Ammonia emissions increased by 29%, while nitrogen leaching losses decreased by 39% over the same period.
  • Total phosphorus runoff losses decreased by 27% to 51%, thanks to better fertilizer use, reduced tillage, and more cover crops.
  • Methane emissions rose by 32%, and reactive non-methane volatile organic compounds increased by 53%, attributed to long-term manure storage and silage practices.
  • Continued advancements are essential to further reduce the environmental impact of dairy farming in light of climate variability.

Summary:

Over the past 50 years, US dairy farms have drastically improved in areas like milk production efficiency and environmental sustainability. With 30% fewer cows, farms now produce double the milk. Technological advancementshave reduced greenhouse gas (GHG) emissions intensity by 42% and fossil energy use intensity by 54%. However, total GHG emissions rose by 14%, and methane and reactive non-methane VOC emissions increased due to enhanced manure storage methods. Water use in the western regions surged by 42% despite efficiency improvements. The eastern regions showed notable reductions in nutrient runoff, emphasizing a mixed but overall positive trend towards sustainable dairy farming. Technological advancements, crop yields, and farm management have improved the dairy farming industry, reducing greenhouse gas emissions, improving fossil energy efficiency, and ensuring smarter water usage. Smarter agricultural equipment has transformed the dairy sector, with tractors now being more fuel-efficient and fertilizers requiring less to provide higher crop yields and minimize nutrient runoff. Some beneficial developments have been achieved, such as reduced ammonia emissions and fertilizer runoff losses due to improved agricultural techniques.

Learn More: 

EU Dairy Decline: 2024 Milk Production Forecasted to Drop 0.3% Amid Lower Cow Numbers and Rising Costs

Discover why EU milk production is forecasted to drop 0.3% in 2024. How will declining cow numbers and rising costs impact the dairy industry? Read more to find out.

EU Flag waving against blue Sky

European Union milk production is set to face another challenging year, continuing its downward trend into 2024. Several factors contribute to this decline, with a predicted 0.3% drop in cow milk production. As the number of dairy cows falls below 20 million for the first time, it’s evident that consistent growth in cow productivity won’t fully offset the shrinking cow inventories. Rising production costs and lower farm-gate milk prices further exacerbate the situation, making milk production less profitable for EU farmers.  Join us as we delve further; these elements paint a comprehensive picture of the EU’s milk production landscape in 2024.

EU Dairy Herds Dwindling: First-Ever Drop Below 20 Million Cows Marks 2024’s Start

CountryDairy Cows in Milk (January 2024)Expected Change in Dairy Farmer Numbers (2024)Milk Production (Forecast for 2024)
Germany4.0 millionDecreaseStable
France3.5 millionDecreaseSlight Decrease
Poland2.8 millionDecreaseSlight Increase
Belgium0.6 millionDecreaseSlight Decrease
Netherlands1.6 millionMinimal ChangeStable
Ireland1.5 millionMinimal ChangeDecrease

At the start of 2024, the EU saw a significant change in its dairy industry: dairy cows dropped below 20 million, hitting 19.7 million. This marks a historic low and indicates a continuing downward trend in cow numbers, which is expected to persist throughout the year.

The Double-Edged Sword of Rising Cow Productivity Amid Shrinking Herds

Even though each cow produces more milk, more is needed to make up for the overall decline in cow numbers across the EU. Simply put, fewer cows mean less milk overall. This imbalance contributes directly to the forecasted 0.3% drop in milk production for 2024. Despite individual productivity gains, the milk output is declining due to the shrinking herds.

A Temporary Respite: Early 2024 Sees Milk Deliveries Surge Before Expected Decline

Time PeriodMilk Deliveries (MMT)Change (% Year-on-Year)Average Farm Gate Milk Price (EUR/100kg)

January-February 2023 24.0 – 40.86

January-February 2024 24.4 1.7% 35.76

Full Year 2023 145.24 -0.03% 39.50

Full Year 2024 (Forecast) 144.8 -0.3% 37.00

Early 2024 saw a 1.7% rise in cow’s milk deliveries compared to the same period in 2023. However, this boost is short-lived. Many farmers are expected to sell their cows or exit milk production later in the year, leading to a decline in deliveries.

The Multifaceted Challenges Shaping Europe’s Dairy Economy

The economic landscape for dairy farmers is becoming more challenging. A key issue is the steady drop in farm-gate milk prices since early 2023, significantly affecting profitability. 

Production CostsHigh production costs for energy, fertilizers, and labor persist, squeezing farmers’ margins despite some recent reductions. 

Geographical Impact: In Germany, France, Poland, and Belgium, smaller and less efficient farms are hardest hit. The pressure from lower milk prices and high input costs drives many to reduce herd sizes or stop milk production. 

Environmental RegulationsEnvironmental rules in the Netherlands and Ireland seek to cut nitrogen emissions, which are expected to negatively affect herd numbers and production costs in the long term. 

Overall, larger farms may better cope, but the trend toward consolidation continues due to falling profits and rising costs.

Environmental Regulations Cast Long Shadows Over EU Dairy Farming

Environmental regulations are threatening Europe’s dairy farming. New measures to curb nitrogen emissions are adding pressure on struggling farmers in the Netherlands and Ireland. 

For example, the Netherlands aims to cut nitrogen emissions by 50% by 2030, including reducing the number of dairy cows and relocating farms. Ireland’s targets similarly demand stricter manure management and sustainable farming practices, both costly and complex. 

These regulations, combined with high production costs and declining milk prices, make it challenging for smaller farms to stay in business. Many are choosing to exit the market rather than invest in expensive upgrades. 

As a result, smaller farms are shutting down, and larger farms need help to maintain their herd sizes. Although these regulations are essential for a greener future, they add another layer of complexity to the EU dairy industry’s challenges.

Generation Renewal Crisis Accelerates Market Consolidation in EU Dairy Sector

A growing trend in market consolidation and farm closures is evident within the EU dairy sector. One key issue here is the challenge of generation renewal. Younger generations are increasingly hesitant to continue milk production due to the heavy workload and tight profit margins. Elevated production costs and decreasing farm-gate milk prices also make it challenging for smaller, less efficient farms to stay in business. 

However, larger and more professional farms show notable resilience. They often have better infrastructure, access to advanced technology, and excellent financial stability, allowing them to maintain herd numbers despite broader declines. By leveraging economies of scale and more efficient practices, these farms can better absorb economic shocks and comply with environmental regulations. 

This disparity between small and large farms is accelerating market consolidation. As smaller farms exit, larger ones are absorbing their market share. While the total number of dairy farms is decreasing, those that remain are becoming more advanced and better equipped to tackle future challenges in the dairy economy.

Record-High Milk Prices in 2022 Spark Production Surge, Only to Shatter in 2023-2024

The surge in milk deliveries in 2022 and 2023 stemmed from record-high EU farm gate milk prices in 2022, peaking in December. These prices incentivized farmers to boost production despite rising costs, supporting the dairy industry at that time. 

However, these prices began to fall from May 2023 through March 2024, squeezing farmers financially. Although still above the 5-year average, the decline sharply contrasted with 2022’s profitability. With global milk production up and dairy demand fluctuating, EU farmers adjusted their production levels, paving the way for a predicted drop in milk deliveries in 2024.

The Ripple Effect: How Global Market Dynamics Shape EU Milk Prices 

Global market dynamics significantly impact EU milk prices. The world’s largest dairy exporters, including Australia, the United States, the UK, and New Zealand, have increased production, leading to an oversupply that pressures prices downward. This makes it challenging for EU producers to maintain their margins. 

Simultaneously, demand from major importers like China and some Middle Eastern countries is declining. Various factors, including trade tensions and shifting consumer preferences, contribute to this weaker demand. 

This supply-demand imbalance has reduced farm gate milk prices in the EU. While European prices remain higher than those of international competitors, more than this advantage is needed to counteract the rising production costs and reduce global demand. The EU dairy industry must navigate these challenges to stay competitive and sustainable.

Price Disparities in Global Dairy: EU’s Costly Position Against New Zealand and US Competitors

When you look at milk prices, you’ll notice that the EU’s are much higher than those of other major exporters like New Zealand and the US. In February 2024, the EU’s milk price hit EUR 46.42 per 100 kilograms. That’s 27% more than New Zealand’s and 18% more than the US. 

These higher prices mean EU dairy products cost more to produce and sell, making it challenging for EU producers to compete globally. Higher costs can squeeze farmers further, especially with high input costs and changing demand.

Weather Woes: Uneven Conditions Across Europe Impact Dairy Farming

In 2024, weather was vital in shaping feed and pasture conditions across Europe. Spring brought warm temperatures and balanced rainfall, leading to good green feed availability. However, the northwest, especially Ireland, faced challenges. Ireland’s dairy farming, which relies on cattle grazing for up to nine months, has struggled with wet soils and recent rains. These conditions hindered field access and grassland regrowth, severely impacting milk production.

The Bottom Line

In summary, EU milk deliveries are forecast to dip to 144.8 million metric tons (MMT) in 2024. Unfavorable weather and high input costs for energy and fertilizers are straining farmer margins. Despite brief boosts in productivity, these challenges will likely persist throughout the year.

Key Takeaways:

  • Decline in Cow Numbers: Cow numbers fell below 20 million for the first time in early 2024, indicating a continuing downward trend.
  • Productivity vs. Herd Size: Increased productivity per cow is not enough to counterbalance the overall decrease in herd sizes.
  • Initial Surge in Milk Deliveries: Early 2024 saw a 1.7% increase in milk deliveries, but this is expected to decline as more farmers exit the industry.
  • Decreasing Profitability: Farm-gate milk prices have been falling since early 2023, alongside high production costs, squeezing farmers’ profit margins.
  • Impact of Environmental Regulations: Government plans to cut nitrogen emissions in countries like the Netherlands and Ireland are affecting herd numbers.
  • Market Consolidation: The industry is seeing greater consolidation, with smaller, less efficient farms closing and bigger farms maintaining their herd sizes.
  • Weather Complications: Varying weather conditions across Europe in 2024 have impacted green feed availability and pasture conditions, particularly in Ireland.

Summary: The European Union’s milk production is experiencing a significant decline, with a predicted 0.3% drop in cow milk production. This decline is attributed to rising production costs and lower farm-gate milk prices. The number of dairy cows has fallen below 20 million for the first time, making milk production less profitable for EU farmers. In early 2024, there was a 1.7% rise in cow milk deliveries compared to the same period in 2023, but this was short-lived as many farmers were expected to sell their cows or exit milk production later in the year. The economic landscape for dairy farmers is becoming more challenging, with a steady drop in farm-gate milk prices since early 2023 significantly affecting profitability. High production costs for energy, fertilizers, and labor persist, squeezing farmers’ margins despite some recent reductions. The EU dairy sector is experiencing a growing trend of market consolidation and farm closures, with younger generations increasingly hesitant to continue milk production due to heavy workloads and tight profit margins.

Send this to a friend