Archive for Feed Conversion

Impact of Forage Quality on Cattle Feeding Behavior: Insights and Practical Measurements

Find out how forage quality affects cattle feeding behavior and productivity. Learn practical ways to measure and improve your herd’s performance. Interested? Read on.

2229975357

Within the intricate realm of dairy production, fodder quality is a pivotal pillar for animal welfare and output. Even slight alterations in a cow’s eating pattern can significantly impact its well-being and productivity. The cattle’s standard digestion and overall health hinge on feeding behavior, including eating time, sorting, and rumination. The direct influence of forage quality on these activities determines the efficiency of livestock in converting feed into milk and meat. Farmers and dietitians can make informed decisions to enhance cow health and agricultural efficiency by delving into these dynamics. Join us as we dissect how feeding behavior is shaped by pasture quality, thereby influencing cow production and welfare.

The Comprehensive Nuances of Forage Quality 

Key elements in forage quality include physical traits and nutritional value. Nutritive value pertains to minerals, proteins, vitamins, and carbohydrates—essential nutrients. Good-quality fodder guarantees these nutrients satisfy ruminants’ dietary requirements.

Physical properties like particle size, texture, and moisture content influence the ease of consumption and digestion. Fiber digestibility, which encompasses elements like lignin and cellulose, is a key component. High fiber digestibility allows ruminants to maximize the nutritional content of the fodder.

Fermenting quality also depends on maintaining silage and improving its palatability and digestibility. Well-fermented forage reduces spoilage and maintains better nutritional content, supporting animal health and production.

Different forages have different qualities; examples of such range corn silage and sorghum silage. Usually having better fiber digestibility and a more effective neutral detergent fiber (NDF) percentage, corn silage helps to support extended eating time and effective rumen fermentation. On the other hand, sorghum silage often contains less digestible fiber, which requires lengthier mastication and animal sorting to satisfy dietary demands. Its less desired fermentability could influence palatability and nutritional preservation.

Decoding the Intricacies of Cattle Feeding Behaviors: Eating Time, Sorting, and Rumination

They demonstrate essential feeding habits for cattle digestion and health. These include sorting, feeding times, and rumination.

Eating Time: Cattle spend this time at the bunk chewing feed. Longer eating times imply that they evaluate and choose feed, improving nutritional consumption. Longer eating times increase salivary flow, which helps fermentation and buffers rumen pH.

Cattle sort their feed to choose specific components, affecting the nutritional balance of their diet. Eating grains instead of roughage will help avoid digestive problems like acidosis. Forage quality affects sorting; more appealing forages help minimize this tendency.

Rumination, often known as cud-chewing, is food regurgitated and re-chewed. Broken-down forage and effective digestion depend on this. Every cud chew increases saliva-containing bicarbonates that balance rumen pH and neutralize stomach acids. Furthermore, improving rumen motility helps pass.

Feeding behavior is based on resting time, representing a cow’s total time budget. Enough slumber allows for sufficient stress management and rumination. Lack of rest might indicate problems with barn management or feed quality, lowering feed efficiency and milk output. Monitoring and adjusting feeding behavior and enough rest increase cow welfare and production.

Embracing Cutting-Edge Technologies to Measure and Enhance Cattle Feeding BehaviorModern technology provides a range of practical tools to track essential facets of cattle’s daily activities. These include sensors, ear tags, pedometers, and collars. For instance, pedometers can monitor eating and resting habits, providing complete activity data, while ear tags with accelerometers measure rumination via jaw motions.

Emerging camera systems in barns and advanced software can forecast eating times and sorting actions, providing exciting future developments in cattle feeding behavior monitoring. When fully developed, these tools will provide even more comprehensive data for producers and dietitians.

These instruments provide dietitians and producers with practical knowledge. By tracking these activities, one might find variations in eating habits that suggest variations in fodder quality. This enables prompt actions to preserve herd health and production by changing feeding plans, diet adjustments, or new management techniques.

Adopting a Proactive Approach to Cow Management through the Use of Various Measuring Technologies

Understanding the Impact of Forage Quality on Feeding Behavior: Key to Optimizing Cattle Productivity and Welfare

Maximizing cow production and welfare depends on an awareness of how forage quality affects feeding behavior. Comparatively to cattle diets of corn silage vs sorghum silage, recent studies show notable variations in feeding behavior. Spending between 85 and 95 percent of their feeding period digesting this fodder, cows are given maize silage—with a higher digestible neutral detergent fiber (NDF) fraction—spaced around. By comparison, cows given sorghum silage—which has less digestible fiber—spent between 105 and 110% of their feeding time at the feed bunk. This shows that fodder quality highly influences eating behavior, especially fiber digestibility.

Leading causes of these variations include sorting behavior and mastication time. Because corn silage is more digestible, cows need less mastication and may more quickly get their needed intake. On the other hand, the stiffer fiber of sorghum silage requires more extended chewing and rumination to lower the bolus to a reasonable size for digestion. Moreover, cows show selective eating habits; they regularly sift their food to pick more acceptable parts. The less tasty quality of sorghum silage causes cows to spend more time sorting; this contrasts significantly with the more equally digested corn silage.

These results highlight the complex relationship between forage quality and feeding behavior, stressing the importance of cautious forage choice and management to guarantee the best animal performance and welfare. Regarding feeding time and behavior, usage quality becomes a significant factor for farmers trying to improve cattle production and welfare.

Actionable Strategies for Producers to Monitor and Enhance Forage Quality 

Producers trying to monitor and improve fodder quality must have practical plans. Regular forage testing is vital first. Quick, reliable evaluations of forage nutrients made possible by tools like NIRS (Near-Infrared Spectroscopy) help guide feeding plans. Early identification of variations in feed quality can enable remedial action before they affect cattle performance.

Seeing feeding behavior provides more information than just testing. Variations in feeding times, sorting methods, and rumination point to changes in fodder quality. Cattle that spend too much time at the feed bunk or shun certain forages, for instance, may indicate problems with palatability or digestibility. Similarly, a shortened rumination period might indicate insufficient fiber content or poor feed quality.

Modern sensor technology lets producers track these trends. Real-time data from devices such as pedometers, collars with accelerometers, and ear tags track activity levels, feeding length, and rumination, thereby guiding management choices. These tools identify minute behavioral changes indicating declining fodder quality or animal health problems, therefore serving as early warning systems.

A dynamic approach—regular testing, constant monitoring, and quick changes—helps maximize cattle production and welfare. Producers can guarantee their herds get ideal nutrition by knowing and reacting to the interaction between forage quality and eating behavior, improving health and performance.

The Bottom Line

Ultimately, forage quality powerfully shapes cattle grazing behavior, production, and welfare. Our research reveals how fodder quality—physical characteristics and nutritional value—affects cattle’s feeding time, sorting, and rumination. For forages like corn silage, high-fiber digestibility sets off different feeding patterns than less digestible choices like sorghum silage. Producers trying to maximize herd welfare and production need this awareness.

The development of sophisticated technology, such as sensors and future camera systems, provides encouraging means to track eating patterns more accurately. These instruments provide farmers with real-time insights into feeding and rumination, helping them spot problems with fodder quality before they become more serious.

Essential investments are in modern monitoring technologies and premium forages. Producers should welcome these developments for more effective, healthy herds. Improving feed quality and using contemporary technology will help the agricultural industry ensure cattle survival and flourish, guaranteeing a sustainable and profitable future in cow farming.

Key Takeaways:

  • Feeding behavior encompasses eating time, sorting, and rumination — critical factors influenced by the quality of forage.
  • Variations in forage quality, particularly between corn silage and sorghum silage, significantly impact cattle’s time spent at the feed bunk and their overall feeding patterns.
  • High-quality forage with greater fiber digestibility encourages more efficient feeding behaviors, ultimately enhancing cows’ productivity.
  • Monitoring techniques: Modern technologies like sensors, pedometers, and collars are essential for measuring and understanding cattle feeding behaviors.
  • Producers can potentially identify forage quality issues through changes in cattle’s resting and rumination periods, leading to timely adjustments and improvements in forage management.
  • The interplay between forage quality and feeding behavior holds the key to improving both the performance and welfare of dairy herds, marking an area ripe for further research and innovation.

Summary:

Fodder quality is crucial in dairy production as it influences livestock’s efficiency in converting feed into milk and meat. Physical traits and nutritional value, such as particle size, texture, and moisture content, influence consumption and digestion. Fiber digestibility is essential for ruminants to maximize fodder nutritional content. Fermenting quality depends on maintaining silage and improving its palatability and digestibility. Eating time, sorting, and rumination are essential feeding habits for cattle digestion and health. Longer eating times indicate better nutritional consumption and prevent digestive problems like acidosis. Sorting affects the nutritional balance of the diet, and rumination affects broken-down forage and digestion. Monitoring and adjusting feeding behavior and resting time improve cow welfare and production.

Learn more:

Discover the Unique Nutritional Needs of Jersey Cows

Discover how to maximize efficiency and health in Jersey cattle. Learn about their unique nutritional needs and how to address them effectively.

Holsteins are known for high milk volume, while Jerseys shine for quality and adaptability. Their smaller size and unique traits make them valuable assets. However, they have distinct nutritional needs that require careful attention to optimize health and efficiency.  Jerseys excel in producing nutrient-rich milk and are incredibly efficient in feed conversion and land use. Addressing their specific requirements can boost milk quality , which refers to the composition and characteristics of the milk, and herd health, making them essential for sustainable and profitable dairy farming.

Jersey Milk: Nutrient-rich, Flavorful, and Versatile for Health and Culinary Applications

When it comes to dairy, the nutritional quality of milk significantly impacts consumers. Jersey milk, boasting higher protein, milkfat, and calcium than Holstein milk, is a standout choice. Its increased protein levels aid muscle maintenance and repair, crucial for active and aging individuals. A higher milkfat percentage promotes the absorption of fat-soluble vitamins essential for overall health. Additionally, elevated calcium content strengthens bones and teeth, making Jersey milk ideal for boosting family nutrition. This superior quality of Jersey milk instills confidence in dairy professionals about the value they provide to consumers. 

“The nutrient density of Jersey milk provides essential nutrients in higher quantities and enhances its culinary versatility. Chefs and home cooks prefer Jersey milk for its rich texture and flavor, which can elevate both sweet and savory dishes.”

  • Improved Nutritional Profile: More protein for muscle health and milkfat for vitamin absorption.
  • Culinary Excellence: Superior taste and texture favored by chefs.
  • Enhanced Bone Health: Increased calcium supports strong bones.

Jersey milk’s unique nutritional composition also benefits beyond essential dairy consumption. Cheese, yogurts, and other dairy products made from Jersey milk often offer exceptional taste and quality, favored by consumers and chefs alike. This versatility and value highlight why Jersey Milk’s milk’s nutritional characteristics are indispensable.

Jerseys: Small Stature, Significant Advantages for Dairy Operations 

Jerseys, with their smaller size than Holsteins, offer unique advantages to dairy operations. Their compact stature means they consume less feed and optimize barn space. Despite their smaller size, Jerseys excel in converting feed to milk with high protein, milkfat, and calcium levels. This unique trait empowers dairy farmers to maximize their resources and enhance their herd’s productivity. 

Jerseys also maintain a higher dry matter intake (DMI) after calving, which is crucial for meeting energy needs during lactation and reducing metabolic disease risks. Their increased chewing improves rumen stability and fiber digestibility, making them more efficient feed converters than other breeds.

Scientific Validation: Jerseys’ Superior Feed Conversion Efficiency 

Scientific research demonstrates that Jerseys are significantly more efficient than Holsteins at converting feed into milk components. Studies show that when producing the same amount of protein, milkfat, and other solids, Jerseys need 32% less water, use 11% less land, and consume 21% less fossil fuels. This efficiency highlights their minimal environmental impact

Moreover, Jerseys extract and utilize energy from their diets more effectively, leading to higher nutrient levels in their milk. A glass of Jersey milk contains 18% more protein, 29% more milkfat, and 20% more calcium than Holstein milk. This nutrient density underscores Jersey milk’s superior quality and enhances the breed’s value in the dairy industry.

Key Nutritional and Health Differentiations: Feed Intake, Energy Metabolism, and Overall Health 

When examining Jersey’s dietary and health needs, three areas stand out: feed intake and digestion, energy metabolism, and health. 

Regarding feed intake and digestion, Jerseys maintain a higher DMI post-calving relative to their body weight. This, alongside spending more time chewing, supports a stable rumen environment, enhancing fiber digestibility and feed conversion efficiency. 

In terms of energy metabolism, Jerseys extract more energy from their diet. Energy metabolism refers to the chemical reactions in the body that convert food into energy. Efficient energy metabolism is crucial for cow health and milk production, as it ensures that the cow’s energy needs are met. Jerseys’ ability to extract more energy from their diet means they require fewer resources than Holsteins, making them more environmentally sustainable. Their milk is richer in protein, milk fat, and calcium. 

Regarding health, Jerseys’ smaller size and robust hooves reduce lameness and disease risks. Their higher rumen pH offers better resilience against acidosis. However, fewer vitamin D receptors in their gut increase their risk for milk fever, necessitating careful DCAD management. 

Another critical difference is Jersey’s faster maturity rate, which increases their risk of becoming overweight. Effective strategies include housing them with older Holsteins to better match their nutritional needs and promote healthy growth.

Health Advantages: Why Jerseys Outshine Other Breeds in Dairy Farming 

Jerseys boast substantial health benefits, enhancing their appeal to dairy farmers. Their tiny, hard black hooves produce fewer lameness issues, like hairy heel warts, common among larger breeds. This durability ensures Jerseys are productive, reducing mobility issues and associated treatment costs. 

Additionally, Jerseys maintain a higher rumen pH, granting them better tolerance and quicker recovery from acidosis. This trait helps stabilize digestive health during stressful periods like calving, ensuring high feed efficiency and milk production without frequent digestive upsets. 

However, Jerseys are more susceptible to milk fever due to fewer vitamin D receptors in the gut, making them three times more likely to experience this condition than Holsteins. Milk fever, also known as hypocalcemia, is a metabolic disorder that occurs when the cow’s blood calcium levels drop rapidly after calving. It can lead to muscle weakness, reduced feed intake, and even death if not managed properly. 

Managing this requires proactive measures like monitoring dietary cation-anion difference (DCAD) and calcium mobilization strategies. Regular urine pH checks can help adjust prepartum rations. When current rations fall short, adding anionic salts can effectively prevent milk fever, safeguarding Jersey cow health and productivity.

Optimizing Health and Productivity through DCAD Monitoring and Glucose Enhancement in Jerseys 

To manage Jerseys effectively, it is crucial to monitor and adjust the dietary cation-anion difference (DCAD) and enhance glucose production. These strategies will help mitigate the risks of milk fever while supporting overall energy balance and immune function. 

  • Jerseys maintain higher dry matter intake (DMI) post-calving, aiding in rumen health and feed efficiency.
  • They are efficient feed converters, extracting more energy from smaller absolute feed intake.
  • Jersey milk is nutritionally superior, with higher protein, milkfat, and calcium than Holstein milk.
  • Jerseys mature faster, requiring careful feeding strategies to avoid overweight issues; housing with older Holsteins can help.
  • Jerseys have healthier hooves and higher rumen pH, reducing lameness and acidosis risks.
  • Monitor DCAD status closely to prevent milk fever, utilizing calcium mobilization strategies as needed.
  • Enhancing glucose production can mitigate negative energy balance and support immune function.
  • Breed-specific research is essential for optimizing Jerseys’ health and productivity.

First, consistently measure your cows’ urine pH, aiming for levels between 6.2 and 6.8. If current rations don’t achieve these levels, add anionic salts to the diet to improve calcium mobilization and prevent milk fever. Maintaining optimal DCAD is essential for Jersey’s health during its transition period. 

Enhancing glucose production is vital to counteract the negative energy balance seen postpartum. Increase the energy density of rations by using highly digestible forages and grains, and consider glucose precursors like propylene glycol or glycerol. These can be administered postpartum to address the energy gap, supporting energy reserves and immune function. 

Implementing these strategies requires careful observation and flexibility. Regular monitoring and timely dietary adjustments will help keep Jersey herds healthy and productive, meeting the demanding targets of modern dairy operations.

The Bottom Line

Jersey cattle have distinct nutritional needs that require special attention. Their efficient feed conversion, smaller size, and unique metabolism necessitate specific feeding and management practices to ensure optimal health and productivity. Addressing these requirements is crucial for the success and welfare of Jersey herds. By focusing on feed intake, energy metabolism, and health, farmers can maximize the potential of Jerseys, contributing to sustainable and profitable dairy farming. 

Utilizing Jerseys’ superior feed efficiency and unique health benefits, dairy farmers can boost milk production and overall herd welfare. Jerseys’ higher milk solids and lower environmental impact enhance their value in sustainable farming. Their resilience to certain health issues and energy efficiency make them an optimal choice for modern dairy operations. Adapting management practices to meet the specific needs of Jersey cattle will lead to healthier, more productive herds. 

I urge dairy farmers to integrate these tailored strategies into their operations. This will yield significant improvements in sustainability, productivity, and profitability. The future of dairy farming involves embracing the distinctive strengths of Jersey cattle, making them central to a thriving dairy industry.

Key Takeaways:

  • Jerseys maintain a higher dry matter intake (DMI) post-calving, aiding in overall digestive efficiency.
  • They spend more time chewing per unit of dry matter, promoting a stable rumen environment and increased fiber digestibility.
  • For the same production of protein, milkfat, and other solids, Jerseys use significantly fewer resources compared to Holsteins.
  • Jersey milk is richer in protein, milk fat, and calcium, enhancing its nutritional value.
  • Housing Jerseys with slightly older Holsteins can mitigate the risk of excessive weight gain.
  • Jerseys’ smaller stature and hard black hooves reduce susceptibility to lameness and certain diseases.
  • Jerseys possess a naturally higher rumen pH, making them more resilient to acidosis.
  • However, fewer vitamin D receptors make Jerseys more susceptible to milk fever.
  • Monitoring dietary cation-anion difference (DCAD) and enhancing glucose production are crucial for optimal health and productivity.

Summary: The U.S. dairy industry is dominated by Holsteins, known for high milk volume, while Jerseys excel in quality and adaptability. Jerseys have unique nutritional needs that require careful attention to optimize health and efficiency. They excel in producing nutrient-rich milk and are efficient in feed conversion and land use. Addressing their specific requirements can boost milk quality and herd health, making them essential for sustainable and profitable dairy farming. Jersey milk is a standout choice for its nutritional quality, with higher protein, milkfat, and calcium levels than Holstein milk. It enhances muscle maintenance, promotes fat-soluble vitamin absorption, and strengthens bones and teeth. Jerseys offer unique advantages to dairy operations, such as their compact stature, efficient feed conversion, and efficient energy utilization. Key nutritional and health differences between Jerseys and Holsteins include feed intake and digestion, energy metabolism, and overall health. Jerseys maintain a higher dry matter intake post-calving, which supports a stable rumen environment and enhances fiber digestibility and feed conversion efficiency.

Are Your Genetics Wasting Feed and Labor?

Throughout my education and my career in livestock improvement I have heard learned people say ‘the fields of nutrition, reproduction, management and genetics are independent of each other’. As recently as last week I had a nutritionist tell me that what geneticists do is secondary to what a nutritionist can do when it comes to on-farm profit. Well today I wish to challenge that theory of no inter-relationships.

Although I do not want to get into a back-and-forth between genetics and other disciplines, the purpose for this article is to challenge our thinking and see if there are in fact ways that genetics can be complimentary to nutrition, reproduction and management. It takes all disciplines working collaboratively to enhance on-farm profits thereby providing consumers with the dairy products they wish to consume.

If a stranger walked into your facilities and told you that you are wasting 20% of the feedstuffs you produce or that 20% of your daily labor could be eliminated would you throw them off the farm? Or would you stop and listen and consider taking action? If that stranger was your genetic supplier would you continue to consider their advice or would you scoff at them saying that “the genetics you use can not reduce your costs or increase your revenue”.

The following are areas that have a genetic component to them that deserve consideration:

Reproduction

Heifers not calving before 24 months or cows with an extra month or two in the dry pens each lactation take feed and labor at the rate of $2 to $4 (avg $3) per day. A heifer that does not calve until 27 months and takes an extra 45 days per lactation in the dry pen has costs an unnecessary $675 by the time she starts her fourth lactation at 69 months of age. By that time that heifer should be half way thru her fourth lactation. She not only costs an extra $675 but has lost $3000 in milk and progeny revenue by 69 months of age. The dollars lost add up quickly.

Genetically consider using only sires that are well above average for DPR  +1.0 / DF 105, cull heifers and cows with below average fertility ratings either their genetic rating or actual performance, and do not use bulls or retain females that are below 100 for Body Conditioning Score. If you are buying embryos or replacement females be sure to look at the genetic fertility ratings. Making excuses for buying below average animals or embryos is false economy. Another factor that is not a genetic rating, but has a direct bearing on reproduction is Sire Conception Rating. Remember that for each 21 days (one cycle) a female is open it costs $63 and that does not consider increased semen and insemination costs.

Productive Life / Herd Life

Improving just one year of herd life, from a herd average of three to four lactations, can markedly improve the revenue a cow will generate in her lifetime. An extra 26,000 pound or 12,000 kgs per cow per lifetime also reduces the number of heifers that need to be raised or purchased.  In a 300 milking cow herd the total of added revenue and reduced heifer costs can be as much as $300 net per cow per year. As heifer rearing is no longer a major profit centre, like it once was, why incur the feed and labor costs of extra heifers?

Using sires that are at least PL +4.5 or HL 110 is strongly recommended. Females should not be retained for breeding or replacement or purchased as embryos where the cow family members do not make it to third lactation.

Production

The volume of fat and protein produced by each cow each day is a key factor for revenue generation (Read more: Is too much water milking your profits? and 5 things you must consider when breeding for milk production). When that can be done with a lesser volume of water it means less strain on the cow and less water to transport to the milk processor. High output of components means fewer cows needing to be fed and milked to produce a given quantity of fat and protein.  If daily yields are only moderate then feed is wasted feeding too many cows. At the processor more concentrated milk means less water needs to be removed and disposed of. It is a win–win for both the producer and the processor.

To achieve high fat plus protein yields requires that the sires used need to be ranked high genetically for total solids yield. In sire proofs that equates to bulls with 90 kgs fat + protein in Canada and 75 lbs in the USA. Cows should be culled for low total fat + protein yields per day not on volume of milk produced. When purchasing embryos make sure that the genetic merit for fat + protein yield is high.

Udder Health

On a continual basis the requirement for the maximum number of somatic cells in milk is lowered. It is estimated that each case of mastitis costs at least $300 in lost production and drugs. Add to that the extra labor required and the total cost, to all dairy farmers, associated with mastitis is huge.  Sometimes we forgive cows and bulls with poor SCS rating because they have a high rating for a single other trait. That is false economy when you factor in the cost of feed, labour and lost milk revenue. We need to be paying more attention to milk quality in the future than we have in the past.

Animals above 3.00 for SCS should not be used in your breeding program. Better still would be to aim for using bulls that are 2.80 and lower for SCS.  Of note is the fact that as of December 2013 CDN will be producing sire indexes for Mastitis Resistance (Read more: Official Genetic Evaluation for Mastitis Resistance).

Calving Ease

Producers have placed emphasis on calving ease over the past decade. It is now at the point where concern relative to calving difficulty is only mentioned for first calving heifers. Labor is saved with unassisted calvings. As well the dam and calf both get off to better starts. Less drug usage and quicker breeding back of the dam add up to major dollars saved no matter what the herd size.

Bulls receive indexes for both the ease with which their calves are born and for the ease with which their daughters give birth. It is advised to not use bulls that are rated below average for both direct and maternal calving ease.

Other Factors

  • Feet and Legs: Cows without mobility problems save on labor, lost feed and lost revenue.  Use sires that are average or above average for both heel depth and rear legs rear view. Calves and heifers with feet and leg problems seldom get better with age. (Read more: Cow Mobility: One Step Forward or Two Steps Back?)
  • Feed Conversion: In all livestock there are genetic differences in the ability to convert feed to end product. As yet we do not know those genetic differences in dairy cattle but we will know them in time. (Read more: Feed Efficiency: The Money Saver and 30 Sires that will produce Feed Efficient Cows) In is a fact that big cows, producing similar volumes to a medium sized cow, can not be as efficient as they must eat feed to maintain their larger body mass. Some (New Zealand, Ireland, NMS formula,…) already have a negative weighting for body size in their total index formula In the future breeders need to be prepared to select for feed efficiency and likely re-think the ideal cow size. Stay tuned. Research is already underway on feed conversion in dairy cattle.
  • Milking Speed: Slow milking cows were once tolerated in tie stall barns even though they required more labor. Now with parlour, rotary and even robotic systems, cows that slow down the parlour process or that mean fewer cows per robot are not tolerated. Sire indexes for milking speed are available on all bulls in Canada and are often available from bull studs in other countries. Avoid using bulls that leave slow milkers.
  • Polled: Labor required and animal set backs after dehorning are negatives at the farm level. For consumers animal treatment/care is often a concern that may affect milk product consumption. Polled is not just trendy it will be the norm in the future. (Read more: Why Is Everyone So Horny For Polled?, From the Sidelines to the Headlines, Polled is Going Mainline! and Polled Genetics: Way of the Future or Passing Fad?),  Genetic tests are now available that accurate identify animals as homozygous or heterozygous for polled. With each passing month the genetic merit for top polled animals for total merit (TPI, LPI NM$,..) is increasing. Producers need to decide when they will start to breed for polled.

The Bullvine Bottom Line

Every discipline is important to improving on-farm profits. Research at CDN showed that improved genetics accounted for, at least, 40% of the increase in on-farm profitability. Genetics can help reduce the two biggest on-farm cost – feed and labor.  As well it can help drive up revenue per cow. Conclusion: Genetics can save on feed and labor costs. And Genetics can help generate more profit.

Get original “Bullvine” content sent straight to your email inbox for free.

 

Send this to a friend