Archive for Brown Swiss

New August 2024 CDCB Evaluations: Updates, Changes & Impact for Dairy Breeders

Are you curious about how the August CDCB updates will impact your herd? Learn what changes in yield traits and heifer livability mean for your farm’s future.

Summary: Have you been keeping up with the latest updates in dairy farming evaluations? August 2024 brought significant changes to the CDCB evaluations, impacting everything from yield traits like Milk, Fat, and Protein to Heifer Livability. Are you curious about how these updates could affect your herd? These changes are designed to make evaluations more accurate and reflective of current herd conditions: the introduction of the 305-AA standard for yield measurement, significant shifts in PTAs for different breeds, updated Heifer Livability values, and new SNP List and BBR reference population updates affecting crossbred evaluations. Understanding these changes can offer invaluable insights for making more informed breeding decisions. The 305-AA standardization uses a 36-month average age for yield data, improving PTAs for Holsteins but not for Jerseys. These improvements aim to enhance the precision and accuracy of genetic tests, allowing dairy producers to make better-informed choices about their herd’s future. The latest SNP and BBR updates have resulted in variations that could financially impact dairy farms with crossbred animals. Are you interested in how this might play out for you? Keep reading to gain more insights.

  • August 2024 updates in CDCB evaluations introduce significant changes affecting Milk, Fat, Protein, and Heifer Livability traits.
  • The 305-AA standardized yield measurement now uses a 36-month average age, which impacts Predicted Transmitting Abilities (PTAs).
  • Holsteins observed an increase in PTAs for Milk, Fat, and Protein, while Jerseys saw a decline.
  • Updated Heifer Livability values reflect two years of additional data, enhancing reliability.
  • SNP List and BBR reference population updates bring notable changes for crossbred animal evaluations.
  • These changes aim to provide more accurate and contemporary genetic assessments to aid in better breeding decisions.
CDC evaluations, dairy farmers, August 2024, genetic evaluations, yield traits, Heifer Livability, Breed Base Representation, Lifetime Net Merit, 305-AA, Milk Fat Protein, regional adjustments, Holsteins, Jersey PTAs, Brown Swiss, Guernsey, Ayrshire bulls, Productive Life, Cow Livability, SNP List, BBR Reference Population, crossbred animals, Holstein haplotype, Jersey Neuropathy, fertility, breeding decisions, herd management.

Have you ever wondered how the newest genetic evaluation updates may affect your herd? Or what would these upgrades imply for your future breeding decisions? If you answered yes, you’ve come to the correct spot. This August, the Council on Dairy Cattle Breeding (CDCB) announced several significant modifications in genetic assessments that would impact the dairy farming environment. We’re discussing new standards like the 305-AA yield measurement, Heifer Livability updates, SNP list revisions, and Breed Base Representation (BBR) values. These may seem complex, but stay with me—understanding them might be a game changer for your farm. These adjustments are more than modest modifications; they significantly influence the parameters you use to make essential breeding and management choices. I’ll review each one, from how Holsteins are increasing in milk, fat, and protein to why Jersey PTAs are declining.

You’ll also learn about the rippling effects on qualities such as Productive Life and Cow Livability. The August 2024 genetic examinations resulted in momentous developments that might change how you see your herd’s genetic potential. This is important because, let’s face it, keeping on top of genetic examinations will improve your herd’s production and, ultimately, your bottom line and open up new possibilities for growth and improvement on your farm. Intrigued? Let’s dig in and see what these changes imply for you and your farm.

The August 2024 CDCB Evaluations Brought Several Noteworthy Updates. Let’s Break Them Down: 

The August 2024 CDCB evaluations brought several noteworthy updates. Let’s break them down: 

  • 305-AA Standardized Yield Measurement: This revision establishes a new standard for yield records, moving from 305-ME mature equivalent to a 36-month average age. It also revises age, parity, and season adjustment factors. This standardization is more precise in capturing environmental variables and is breed-specific.
  • Heifer Livability: The revised Heifer Livability ratings incorporate two years’ worth of lost data and additional editing criteria tailored to herd circumstances. This increases dependability and influences linked qualities such as Productive Life (PL) and Cow Livability (LIV).
  • SNP List and BBR Reference Population Updates: These changes include a new SNP list and a BBR reference population update, affecting purebred and crossbred animals’ status and genetic assessments. This modification has raised assessment variability, particularly in hybrid animals genotyped at low density or with incomplete pedigrees.

Why the 305-AA Change Matters for Your Dairy Farm’s Future 

The launch of 305-AA has sparked interest among dairy producers. This is a gradual change but a substantial shift in how yield data are standardized. So, what precisely is 305-AA? Essentially, it is a technique of standardizing yield data that uses a 36-month average age rather than the older 305-ME (mature equivalent). This implies that the new approach considers the average age, parity, and seasonal modifications for five climatic areas in the United States. These improvements are intended to provide a more realistic picture of environmental variances. It is also breed-specific; therefore, the influence varies according to the breed.

Why does this matter? Accurate yield data is critical for making educated breeding and herd management choices. The new changes consider more specific environmental characteristics, providing a more precise evaluation customized to each breed.

Let’s get specific. For Holsteins, the 305-AA modification improved the Predicted Transmitting Ability (PTA) for Milk, Fat, and Protein. This has resulted in a minor increase in the Lifetime Net Merit $ (NM$) index, which typically ranges from +10 to +15 NM$, depending on whether we’re talking genetic or proven bull groupings. This is a welcome improvement for anyone interested in Holsteins.

On the other hand, the Jerseys have not fared well. Their PTAs for milk, fat, and protein decreased significantly—by around 100, -6, and -6 pounds, respectively. As a result, their NM$ index declined by an average of -70 to -50 NM$. Jersey breeders may be concerned about the long-term economic worth of their herds. Understanding the reasons for these changes in the Jersey breed is essential, as they can influence future breeding decisions.

You may ask why these adjustments were made. The fundamental goal is to improve the precision and accuracy of genetic tests, allowing you to make more informed choices about the future of your herd. While the change may be difficult for certain breeds, notably Jerseys, the ultimate objective is to use more accurate data to increase productivity and profitability. This reassurance should give you the confidence to make the best decisions for your herd.

Spotlight on Heifer Livability: Unpacking the CDCB Updates 

The most recent CDCB revisions concentrate on heifer longevity values. Incorporating two years’ worth of previously overlooked data has resulted in larger-than-usual adjustments. Consider this: all of those missed records are suddenly coming into play! This change contributes to a better picture of heifer longevity, boosting animal dependability.

But that is not all. New editing criteria also focus more on herd circumstances. Although this is a modest change, it has a significant effect. Dairy producers like you can make better choices with more thorough and accurate data.

These Heifer Livability alterations also affect linked attributes. Productive Life (PL) indicates a minor average reduction of roughly -0.2. Cow Livability (LIV) is also indirectly impacted. How does this affect your day-to-day operations? Reliable data allows you to trust these assessments, knowing that the figures you’re looking at are more realistic representations of your herds.

SNP List and BBR Updates: What’s the Impact on Your Crossbred Animals? 

The newest upgrades to the SNP list and BBR reference population have resulted in significant modifications. What’s fascinating is how these updates affect crossbred animals and the variation in their judgments. The reduced SNP list provides a more focused view of genetic markers, resulting in more accurate statistics.

However, increased accuracy leads to more considerable variability in crossbred assessments. Animals genotyped at low density or with inadequate pedigrees are especially vulnerable. In these circumstances, variations in BBR levels may substantially impact whether they are purebred or mixed. This directly affects the final Predicted Transmitting Abilities (PTAs) for crossbred animals, resulting in a wider variety of assessment outcomes.

The haplotype status has also changed due to the SNP list update. Specifically, changes to HH6 (the sixth Holstein haplotype regulating fertility) and JNS (Jersey Neuropathy with Splayed Forelimbs) have been improved to integrate more direct data. This implies that your herd’s genetic assessments are more accurate than ever. Be prepared for unexpected changes in particular animal ranks, but rest assured that you are now equipped with the most precise information to adapt to these changes.

Picture This: You’re Making Breeding Decisions and Planning for the Future of Your Herd 

The most recent revisions to the CDCB assessments might be game-changers. How, you ask? Let’s dig in.

First, the new standardized yield measurement, 305-AA, significantly impacts yield attributes. An increase in Predicted Transmitting Ability (PTA) for Milk, Fat, and Protein may lead you to consider breeding Holsteins. “The slight upward trend of about +10 to +15 NM$ depending on the bull group can improve your herd’s overall productivity,” says industry expert Paul VanRaden [source]. In contrast, the significant fall in PTAs may cause you to rethink utilizing Jerseys for yield-based objectives for Jersey cattle.

The latest revisions to Heifer Livability include larger-than-usual modifications due to incorporating two years’ worth of missing information. This may influence your judgment on which heifers to keep or cull. Since Productive Life (PL) declined by an average of -0.2, you may choose heifers with higher livability ratings to maintain a more productive and long-living herd.

These modifications may have a financial impact on your income sources. For example, the new SNP list and BBR reference population updates may induce heterogeneity in crossbred animal assessments, particularly for those genotyped at low density or with incomplete pedigrees. If your farm uses mixed animals, you should reconsider the economic sustainability of retaining or growing this segment of your herd.

Consider the implications of HH6 and JNS haplotype status updates. With these new genetic insights, choosing animals that test negative for certain illnesses may become a priority, affecting your financial plans. Jay Megonigal emphasizes the need for rigorous herd management, citing recent studies that show high relationships between changes.

What’s the bottom line? These updates need dynamic changes to breeding techniques, herd management, and financial estimates. As a dairy farmer, remaining knowledgeable and adaptable is critical for adjusting to changing requirements and maintaining a healthy enterprise.

The Bottom Line

To wrap it up, the August 2024 CDCB evaluations have introduced significant changes essential for your farm’s sustainability and profitability. These adjustments can impact your herd’s genetic evaluations and overall performance, from the 305-AA standardized yield measurement to Heifer Livability, SNP lists, and BBR values updates. Staying informed about these updates can help you navigate the changes and plan effective breeding decisions. So, how will you adapt to these new evaluations to ensure your herd’s success? Keeping a close eye on these evaluations and understanding their implications can give you a competitive edge. Remember, your proactive approach could mean the difference between thriving and just getting by.

Learn more:

August 2024 Genetic Evaluations: Key Updates and Innovations from CDCB and USDA AGIL

Discover the latest updates in genetic evaluations from CDCB and USDA AGIL. How will the new 305-AA yield measurement and Constructed IDs impact your herd?

CDCB and USDA Animal Genomics and Improvement Laboratory (AGIL) implemented essential changes to improve genetic assessment accuracy on August 13, 2024. This paper underlines these critical developments and their advantages for the dairy sector. Supported by USDA AGIL’s innovative genomics research, CDCB is well-known for its exact genetic assessments. Among other improvements, the adoption of Constructed IDs and 305-AA standardized yield measurement highlights their dedication to precision and innovation, increasing the dairy industry’s output and sustainability.

CDCB and USDA AGIL Introduce the New Standardized Yield Measurement Known as 305-AA 

In a step meant to transform dairy genetics, the USDA AGIL and CDCB have unveiled the new standardized yield measurement known as 305-AA. This much-awaited change departs significantly from the mature equivalent (ME) standard, effective since 1935. Standardized yield records now benchmark the average age of 36 months or 305-AA. Inspired by current studies, this adjustment marks a methodological turn to reflect a more contemporary dairy environment.

The new 305-AA yield assessment replaces changes relied upon over the last 30 years and incorporates updated age, parity, and season parameters. The recalibrated changes seek to permit fair phenotypic comparisons among cows of various ages, sexes, and calving seasons. The main objective is to evaluate dairy performance under many settings and management strategies.

One significant modification is adjusting herd averages to approach real yields. Under the former ME method, breed-specific yield projections varied by around 10 percent higher than actual yields. Effective June 12, 2024, the estimates of the 305-AA yield become available via CDCB’s WebConnect for animal and data searches. Moreover, the officially adopted, on August 13, 2024, new 305-AA changes are entirely included in the CDCB genetic examinations.

Table 1. The ratio of mature equivalent to 36-month equivalent milk, fat, and protein yields from 1994 or recent data

Breed1994 FactorME / 36-month SD ratio in recent data
  MilkFatProtein
Ayrshire1.101.0921.0761.067
Brown Swiss1.151.1561.1501.142
Guernsey1.051.0431.0091.013
Holstein1.101.0821.0811.059
Jersey1.101.0791.0631.064
Milking Shorthorn1.151.1101.1001.090

This move from 305-ME to 305-AA offers a perceptive analogy. Recent data shows that standardized yields calculated from the 1994 ME factors are routinely more significant than those adjusted to the 36-month equivalent. This change marks a reassessment of yield projections to more closely reflect the contemporary dairy environment and current dairy animal performance.

A vital component of this shift is the modification in standard deviation (SD) “ME / 36-month” ratios, usually seen to be somewhat greater in earlier data than in recent changes. These little variations indicate calibrating output estimations to fit modern dairy production methods and genetic developments.

For predicted transmitting abilities (PTAs), these changes have significant ramifications. Updated ratios closer to 1.08 for Holsteins (HO) and Jerseys (JE) and generally more tiny numbers for fat and protein point to a minor scaling or base adjustment in PTA values. These changes assist representative assessments of dairy cow genetics, improving the validity and applicability of these measures according to contemporary industry requirements. Thus, a sophisticated, data-driven approach to genetic studies helps the dairy industry by promoting informed breeding and management choices.

Enhancing Precision: Modern Dairy Environments and Refined Seasonal Adjustments

Recent data analysis has improved seasonal adjustments to reflect the effect on lactation yields of the changing dairy environment. Modern architecture and construction methods have lessened the seasonal impact on yields, hence stressing improvements in dairy settings. The revised approach reveals minor variations by estimating seasonal impacts within five separate climatic zones defined by average state climate scores. This change emphasizes the advantages of better dairy conditions, lessening the need for significant seasonal changes and more accurate genetic tests. This method guarantees lactation yields are assessed in a framework that fairly represents current environmental and management circumstances using region-specific modifications, enabling more precise and fair comparisons of dairy output.

Robust Validation: Testing New Factors Across Decades of Lactation Records

The new parameters were tested rigorously using 101.5 million milk, 100.5 million fat, and 81.2 million protein lactation data from 1960 to 2022. The validation focused on the relationships of Predicted Transmitting Ability (PTAs) for proven bulls born after 2000. Results were rather good, with correlations of 0.999 for Holsteins, above 0.99 for Jerseys and Guernseys, and somewhat lower, ranging from 0.981 to 0.984, for Brown Swiss and Milking Shorthorns. These strong connections underscore the dependability of the new elements. The study also observed minor changes in genetic trends: a decline for Brown Swiss and Jerseys and a rise for Guernseys. These revelations help us better evaluate our genes, guaranteeing justice and ongoing development.

Revolutionizing Genetics: The Full Integration of Constructed IDs into the CDCB Database 

When fully adopted by August 2024, Constructed IDs represent a significant turning point for CDCB. Targeting partial pedigrees, particularly for animals without maternal ancestry information, this invention launched in mid-2023 and ends in July 2024. Constructed IDs link approximately 3.2 million animals in the National Cooperator Database to newly discovered relatives, developed by significant research by USDA AGIL using over a decade of genetic technology experience.

This improvement increases the dependability and accuracy of genetic tests. The worldwide influence is significant given these complex interactions across the closely linked U.S. dairy community. More precise breeding choices help directly impacted and related animals to improve their genetic quality and raise U.S. assessments. Designed IDs strengthen the genetic bases for further development by filling critical pedigree gaps.

Refined Criteria and Data Integration: Elevating Heifer Livability Evaluations for Improved Genetic Precision 

Recent improvements in heifer liability (HLV) show how committed the USDA AGIL and CDCB are to accuracy and dependability in genetic assessments. Fundamental changes exclude recent heifer fatalities from 2022–24 and rectify previously missed data resulting from changes in cow termination codes. These wholly integrated reports improve HLV assessments immediately. Improving the speed and depth of evaluations is a crucial modification that calls for a minimum of 1 percent mortality loss annually for the data of a herd to be legitimate. Faster adaptability to evolving reporting methods made possible by this change from cumulative to yearly criteria guarantees current herd health dynamics are faithfully captured. These improvements have generally resulted in a significant increase in the dependability of HLV assessments, particularly for bulls with daughters in the most recent data sets, generating more robust genetic predictions for offspring and informed breeding choices.

Pioneering Genetic Insights: Brown Swiss Rear Teat Placement (RTP) Evaluation

A significant turning point in dairy cow breeding is the introduction of the conventional and genomic assessment for Brown Swiss Rear Teat Placement (RTP). Using about 15,000 assessments from January 2024, CDCB and USDA AGIL accurately calculated the RTP parameters. On the 50-point linear scale, about 80 percent of the evaluations lie between 25 and 35 points. Heritability for RTP is 0.21, somewhat similar to front teat placement at 0.22; repeatability is 0.33.

Ranges for Rear Teat Placement in Brown Swiss

 Predicted Transmitting Abilities (PTA)Reliabilities
Males-2.4 to 3.10 to 98%
Females-3.7 to 2.90 to 79%

For bulls with reliabilities between 0 and 98% and for women between 0 and 79%, the PTA values for RTP in Brown Swiss are -2.4 to 3.1 and -3.7 to 2.9, respectively. This assessment uses exact measures and rigorous statistical techniques and emphasizes genetic heterogeneity within the breed.

Breeding choices depend on this thorough assessment, which helps farmers choose ideal RTP characteristics, enhancing herd quality and production. Driven by reliable, data-based conclusions, the August 2024 release of these assessments marks a new chapter in Brown Swiss genetics.

Refined Precision: Streamlining Genetic Markers for Enhanced Genomic Predictions 

Effective August 2024, the genetic marker update improved the SNPs used in genomic predictions, lowering the list from 78,964 to 69,200. This exact choosing approach removed low call rates, poor genotyping quality, minor allele frequencies, and markers with minimal effects. The X chromosome’s length allowed all SNPs to be maintained there. This update improved efficiency by helping to reduce processing time and storage usage by 12%. About 74% of the deleted SNPs originated from high-density chips.

Five other gene tests—HH7 and Slick, among others—were also included in the update. Confirming the low effect on trait averages and standard deviations, preliminary studies revealed a roughly 99.6% correlation between genomic predictions from the old and new SNP lists. For animals with less dense genotypes or partial pedigrees, this recalibration improves the accuracy of genetic assessments.

Incorporating Genomic Advancements: Annual Breed Base Representation (BBR) Updates

Accurate genetic evaluations depend on annual Breed Base Representation (BBR) revisions. This update, set for August, guarantees that the most relevant genetic markers are included in BBR calculations. Consistent with past upgrades, a test run based on February 2024 data confirmed the stability and strength of the new SNP set. The CDCB maintains BBR calculations at the forefront of genetic assessment by including this improved SNP set, giving dairy farmers the most reliable data for informed breeding choices.

Integrating Cutting-Edge Gene Test Data: Enhancing Haplotype Calculations for Holstein HH6 and Jersey JNS

A significant step forward in genetic assessments is combining Holstein Haplotypes 6 (HH6) and Jersey Neuropathy with Splayed Forelimbs (JNS) direct gene test data into haplotype calculations. By providing thorough gene test results to CDCB, Neogen and the American Jersey Cattle Association (AJCA) have been instrumental in this process. More exact haplotype estimations have come from including these direct gene tests in imputation procedures. Test runs greatly increase performance, Particularly for animals with gene test results and their offspring. This integration improves genetic prediction accuracy and emphasizes the need for cooperation in enhancing dairy cow genes.

The Bottom Line

Incorporating innovative modifications to maximize yield metrics, genetic evaluations, and pedigree correctness, the August 2024 genetic assessments signal a turning point in dairy herd management. These advances improve the dependability and accuracy of tests. While improved seasonal and parity corrections reflect current conditions, the new 305-AA standardizes yield measures for fair comparisons. We designed IDs to decrease pedigree gaps, improving assessments and criteria for Heifer Livability (HLV) and rear teat placement for Brown Swiss. Simplified genetic markers and combined genomic advances such as HH6 and JNS gene testing further improve assessment accuracy. These developments provide consistent data for farmers, enhancing the general health and output of dairy cows. Supported by a thorough study, the August 2024 assessments mark a significant breakthrough and inspire manufacturers to use these innovative approaches for more sustainability and efficiency.

Key Takeaways:

  • The 305-AA standardized yield records, adjusted to 36 months, replace the previous mature equivalent (ME) adjustments.
  • Implemented new factors enable fairer phenotypic comparisons across cows of different ages, parities, and seasons.
  • Seasonal adjustments are now estimated within regional climate zones, reflecting improved management and housing reducing environmental impact on yields.
  • Implementation of Constructed IDs enhances pedigree completeness and genetic evaluation accuracy.
  • Heifer Livability (HLV) evaluations refined through revised modeling and data integrations, particularly focusing on recent years’ reports.
  • Brown Swiss Rear Teat Placement (RTP) evaluations introduced, offering significant genetic insights with traditional and genomic evaluations.
  • Reduction of SNPs from 78,964 to 69,200 for streamlined genomic predictions, enhancing processing time and accuracy.
  • Annual BBR updates incorporate the new set of SNP markers, ensuring consistency and precision in breed representation.
  • Direct gene tests for Holstein HH6 and Jersey JNS now included in haplotype calculations, improving prediction accuracy.

Summary: 

The CDCB and USDA Animal Genomics and Improvement Laboratory (AGIL) have introduced a new standardized yield measurement, 305-AA, on August 13, 2024. This change allows fair comparisons among cows of various ages, sexes, and calving seasons. The revised approach estimates seasonal impacts within five separate climatic zones. Robust validation of the new parameters was conducted using 101.5 million milk, 100.5 million fat, and 81.2 million protein lactation data from 1960 to 2022. Results showed good correlations for Holsteins, Jerseys, Guernseys, Brown Swiss, and Milking Shorthorns. The August 2024 genetic assessments represent a significant turning point in dairy herd management, enhancing the dependability and accuracy of genetic tests. Constructed IDs link approximately 3.2 million animals in the National Cooperator Database to newly discovered relatives, improving genetic quality and raising U.S. assessments.

Learn more:

What Dairy Breeders Need to Know About the Transition to 305-AA Yield Estimates

Learn how the new 305-AA yield estimates affect dairy farming. Ready for changes in genetic evaluations and milk yield predictions?

Significant changes are coming for dairy farmers in the U.S. Starting mid-June, the old 305-ME (Mature Equivalent) yield estimate will be replaced by the new 305-AA (Average Age) standard. This isn’t just an update but a significant improvement reflecting modern dairy practices and environmental factors, providing better tools for herd management and breeding decisions. 

Mark your calendars: On June 12, 305-AA yield estimates will debut in CDCB’s WebConnect data queries. By August 2024, they will be fully integrated into CDCB’s genetic evaluations. This change is based on extensive research and data analysis by USDA AGIL and CDCB, which examined over 100 million milk yield records. 

The industry needs updated tools to make accurate, fair comparisons among cows. This transition and the new 305-AA are based on a 2023 USDA AGIL and CDCB study analyzing millions of milk yield records. 

What does this mean for you? Moving to 305-AA aligns yield estimates with current insights on age, lactation length, climate, and other factors affecting milk production. This leads to more precise and fair comparisons among cows, helping optimize your herd’s performance. 

Stay tuned as we dive deeper into the 305-AA transition, its impact on genetic evaluations, breed-specific changes, and what to expect moving forward.

The New Age of Yield Estimation: Introducing 305-AA

305-AA stands for 305-Average Age. It’s the new method for accurately comparing dairy cows of different ages, climates, and calving seasons. This tool estimates a cow’s lactation corrected to a standard age of 36 months using partial yield measurements from milk tests. It’s a robust update reflecting modern dairy practices.

A New Era in Dairy Production Efficiency 

The shift from 305-ME to 305-AA is a game-changer for the dairy industry. For nearly 30 years, the 305-ME system couldn’t keep up with cow management and genetic advances. But now, the new 305-AA model brings us up to speed, leveraging recent insights into age, climate, and lactation variables for a more accurate milk yield estimate. 

A 2023 study by USDA AGIL and CDCB, analyzing over 100 million milk yield records, showed how outdated the old system was. The new 305-AA promises better decision-making tools, boosting both productivity and fairness in the industry.

What 305-AA Means for Different Dairy Breeds 

The transition to 305-AA will affect different dairy breeds in unique ways. Changes will be minimal for Holsteins, as their data heavily influenced the 1994 adjustments. This means Holstein farmers won’t see minor shifts in their yield estimates or genetic evaluations. 

Non-Holstein breeds will see more significant updates due to more precise, breed-specific adjustments. Ayrshires will experience stable PTAs with a slight increase in milk, fat, and protein yields, especially for younger males. Brown Swiss will see slightly higher overall yield PTAs for younger cows, with older animals maintaining stability. 

Guernseys will find that younger males show an increase, while older cows might see a slight decline in their milk, fat, and protein PTAs. Jersey cows will have a noticeable decrease in yield PTAs for younger males, but older males will benefit from an increase in their evaluations. 

This recalibration means that farmers focusing on non-Holstein breeds can expect more tailored and accurate yield estimates. These changes pave the way for better breed management and selection strategies in the future.

The Ripple Effects of 305-AA on Breed-Specific PTAs

The shift to 305-AA adjustments will have varied impacts on Predicted Transmitting Abilities (PTAs) across different dairy breeds. Each breed will experience unique changes for more breed-specific and accurate assessments. 

Ayrshire: PTAs will stay stable, with younger males seeing a slight increase in milk, fat, and protein yields. 

Brown Swiss: Young animals will see a slight increase in yield PTAs, while older animals remain stable. 

Guernsey: Younger males will experience an increase in milk, fat, and protein PTAs, while older males may see a decrease. 

Holstein: Young males will get a boost in yield PTAs, and older animals will have more stable measurements. 

Jersey: Younger males will see a decrease in yield PTAs, while older males will experience an increase.

Coming Soon: 305-AA Data Goes Live on CDCB WebConnect and Genetic Evaluations.

Starting June 12, 2024, you’ll see the new 305-AA yield estimates in CDCB’s WebConnect queries. This kicks off the move to 305-AA. 

By August 2024, 305-AA will be fully integrated into CDCB genetic evaluations. Phenotypic updates in the triannual evaluations will adopt the new method, affecting PTAs and indices like Net Merit $. 

Rest Easy: July Evaluations to Continue Uninterrupted; August Brings Enhanced Accuracy with 305-AA

Rest easy; switching to 305-AA won’t affect July’s monthly evaluations. Your data will still follow the old 305-ME adjustments for now. However, with the triannual update from August 13, 2024, all evaluations will feature the new 305-AA data, giving you the most accurate yield estimates for your dairy herd.

The Bottom Line

The switch to 305-AA is a big step forward. It uses the latest research and a massive database for more accurate milk yield estimates. This change reflects how dairy management and cow biology have evolved over the last 30 years. With 305-AA, comparing cows—no matter their age, breed, or conditions—is now fairer and more scientific. 

Key Takeaways:

The transition from 305-ME to 305-AA is set to bring significant advancements in yield estimation for U.S. dairy farmers. Here are some key takeaways: 

  • Effective date: 305-AA will be officially implemented starting June 12.
  • Modern alignment: This change reflects current management practices and environmental factors.
  • Updated research: Based on a 2023 study examining over 100 million milk yield records.
  • Breed-specific adjustments: Non-Holstein breeds will see more significant changes due to more precise data.
  • Impact on PTAs: Different breeds will experience unique effects on their Predicted Transmitting Abilities (PTAs).
  • Genetic evaluations: The 305-AA adjustments will appear in CDCB genetic evaluations starting August 2024.
  • Uninterrupted evaluations: The July monthly evaluations will not be affected by this change.


Summary: Starting mid-June, the old 305-ME yield estimate will be replaced by the new 305-AA standard, reflecting modern dairy practices and environmental factors. This transition aligns yield estimates with current insights on age, lactation length, climate, and other factors affecting milk production, leading to more precise and fair comparisons among cows. The new 305-AA model is based on extensive research and data analysis by USDA AGIL and CDCB, which examined over 100 million milk yield records. The industry needs updated tools to make accurate, fair comparisons among cows. The transition will affect different dairy breeds in unique ways, with Holstein farmers not seeing minor shifts in their yield estimates or genetic evaluations, while non-Holstein breeds will see more significant updates due to more precise, breed-specific adjustments. Ayrshires will experience stable Predicted Transmitting Abilities (PTAs), Brown Swiss will see slightly higher overall yield PTAs for younger cows, and Guardeys will show an increase in milk, fat, and protein PTAs.

Send this to a friend